Open Access
MATEC Web Conf.
Volume 286, 2019
14th Congress of Mechanics (CMM2019)
Article Number 04003
Number of page(s) 3
Section Integrated Design and Production, Manufacturing Processes
Published online 14 August 2019
  1. A. Amado & K. Wegener Schmid, M. Levy, G.Characterization and modeling of non-isothermal crystallization of Polyamide 12 and co-Polypropylene during the SLS process in PMI, International Polymers and Moulds Innovations Conference, 5; 2012,207-216 PMI, International Polymers and Moulds Innovations Conference, 5. [Google Scholar]
  2. Xiaoyong Tian, gang Peng. “Process prediction of selective laser sintering based on heat transfer analysis for polyamide composite powders”. (2018) state key laboratory of manufacturing systems engineering, 710054, China academy of launch vehicle technology, beijing 100076, china. [Google Scholar]
  3. Roberts, I. A., C. J. Wang, et al. “A three-dimensional finite element analysis of the temperature field during laser melting of metal powders in additive layer manufacturing.” (2009), International Journal of Machine Tools and Manufacture, Vol. 49 iss:12 pp. 916–923. [CrossRef] [Google Scholar]
  4. Pepper, D., Sarler, B. Application of Meshless Methods for Thermal Analysis. Journal of Mechanical Engineering, 51(7), (2005).476–483. [Google Scholar]
  5. R Zamolol and E Nobile, Numerical analysis of heat conduction problems on 3D general-shaped domains by means of a RBF Collocation Meshless Method, (2017). IOP Conf. Series: Journal of Physics: Conf. Series 923. [Google Scholar]
  6. Sara S and Kansa, Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial differential Equations, (2009) (Advances in Computational Mechanics vol 2) (tech science press). [Google Scholar]
  7. D. Defauchy, “Simulation du procédé de fabrication directe de pièces thermoplastiques par fusion laser de poudre”, PhD Doctorate Dissertation, Arts et Métiers Paris-Tech, 2013 L. Dong, A. Makradi, S. Ahzi, Y. [Google Scholar]
  8. Papadatos A. L., “Computer simulation and dynamic control of the selective laser sintering process,” M.Sc. thesis, Clemson University, Clemson, U.S.A., (1998). [Google Scholar]
  9. Papadatos, A., Ahzi, S., Deckard, C. & Paul, F., “On dimensional stability: modeling the Bonus Z during the SLS process,” in Bourell D. L. et al. (Eds.), Proceedings of the Solid Freeform Fabrication (1997), Austin, U.S.A., pp. 709–715. [Google Scholar]
  10. E. Dumoulin, “Fabrication additive de pièces en polymères thermoplastiques hautes performances et en Polyamide 12 par le procédé de frittage sélectif par laser”, PhD Doctorate Dissertation, Mines Paris Tech, 2014 S. [Google Scholar]
  11. Dupin, “Etude fondamentale de la transformation du polyamide 12 par frittage laser: mécanismes physico-chimiques et relations microstructures-propriétés”, PhD Doctorate Dissertation, INSA de Lyon, 2012. [Google Scholar]
  12. Dong, L., Makradi, A., Ahzi, S., & Rémond, Y., “Finite Element Analysis of Temperature and Density Distributions in Selective Laser Sintering process,” Materials Science Forum – Diffusion in Solids and Liquids II, Vol. 553 (2007), pp. 75–80. [Google Scholar]
  13. L. Dong, A. Makradi, S. Ahzi, Y. Remond, “Three-dimensional transient finite element analysis of the selective laser sintering process”, Journal of Materials Processing Technology, 209(2), (2009), 700–706. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.