Open Access
Issue
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
Article Number 02032
Number of page(s) 9
Section Data and Signal Processing
DOI https://doi.org/10.1051/matecconf/201927702032
Published online 02 April 2019
  1. Beaudet, P.: Rotationally invariant image operators. In: Proc. Intl. Joint Conf. on Pattern Recognition. pp. 579-583 (1978) [Google Scholar]
  2. E.T.D. Rosten,: Machine learning for high-speed corner detection. In: European Conference on Computer Vision (2006) [Google Scholar]
  3. Förstner, W.: A feature based correspondence algorithms for image matching. In: Intl. Arch. Photogrammetry and Remote Sensing. vol. 24, pp. 160-166 (1986) [Google Scholar]
  4. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.M.: A comprehensive performance evaluation of 3d local feature descriptors. International Journal of Computer Vision 116(1), 66-89 (Jan 2016). https://doi.org/10.1007/s11263-015-0824-y [CrossRef] [Google Scholar]
  5. Hänsch, R., Weber, T., Hellwich, O.: Comparison of 3d interest point detectors and descriptors for point cloud fusion. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2(3), 57 (2014) [CrossRef] [Google Scholar]
  6. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference. p. 147151 (1988) [Google Scholar]
  7. Herbert Bay, Tinne Tuytelaars, L.V.G.: Surf: Speeded up robust features. In: Lecture Notes in Computer Science. vol. 3951, pp. 404-417 (2006) [CrossRef] [Google Scholar]
  8. Kanade, C.T.T.: detection and tracking of point features. In: Carnegie Mellon University Technical Report CMU-CS-91-132 (April 1991) [Google Scholar]
  9. Käthe, U.: Generische Programmierung fr die Bildverarbeitung. Ph.D. thesis, University of Hamburg (2000) [Google Scholar]
  10. Lang, S.R., Luerssen, M.H., Powers, D.M.W.: Proceedings of the 8th International Conference on Computer Recognition Systems CORES 2013, chap. Repeatability Measurements for 2D Interest Point Detectors on 3D Models, pp. 361-370. Springer International Publishing, Heidelberg (2013) [Google Scholar]
  11. Lang, S.R., Luerssen,M.H. Powers, D.M.W.: Automated evaluation of interest point detectors. Int. J. Softw. Innov. 2(1), 86-105 (Jan 2014). https://doi.org/10.4018/ijsi.2014010107 [CrossRef] [Google Scholar]
  12. Lindeberg, T.: Image matching using generalized scale-space interest points. Journal of Mathematical Imaging and Vision 52(1), 3-36 (May 2015). https://doi.org/10.1007/s10851-014-0541-0 [CrossRef] [Google Scholar]
  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60, 91-110 (2004) [CrossRef] [Google Scholar]
  14. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 60, 63-86 (2004) [CrossRef] [Google Scholar]
  15. Moreels, P., Perona, P.: Evaluation of features detectors and descriptors based on 3d objects. Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 11, 800-807 Vol. 1 (2005) [CrossRef] [Google Scholar]
  16. Olague, G., Trujillo, L.: Evolutionary computer assisted design of image operators that detect interest points using genetic programming. Image and Vision Computing. Elsevier. 29, 484-498 (2011) [CrossRef] [Google Scholar]
  17. Olague, G., Trujillo, L.: Using evolution to learn how to perform interest point detection. Pattern Recognition, International Conference on 1, 211-214 (2006) [Google Scholar]
  18. Powers, D.M.W.: Roc-concert: Roc-based measurement of consistency and certainty. In: 2012 Spring Congress on Engineering and Technology. pp. 1-4 (May 2012). https://doi.org/10.1109/SCET.2012.6342144 [Google Scholar]
  19. Powers, D.M.W.:Evaluation evaluation a monte carlo study. CoRR abs/1504.00854 (2015), http://arxiv.org/abs/1504.00854 [Google Scholar]
  20. Powers, D.M.W.: Visualization of tradeoff in evaluation: from precision-recall & PN to lift, ROC & BIRD. CoRR abs/1505.00401 (2015), http://arxiv.org/abs/1505.00401 [Google Scholar]
  21. Rohr, K.: Modelling and identification of characteristic intensity variations. In: Image and Vision Computing. vol. 10, pp. 66-76 (1992) [CrossRef] [Google Scholar]
  22. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In:European Conference on Computer Vision. vol. 1, pp. 430-443 (May 2006) [Google Scholar]
  23. Schmid, C., Mohr, R., Bauckhage, C.: Evaluation of interest point detectors. International Journal of Computer Vision 37, 151-172 (2000). https://doi.org/10.1023/A:1008199403446 [CrossRef] [Google Scholar]
  24. Trujillo, L., Olague, G.: Automated design of image operators that detect interest points. Massachusetts Institute of Technology 16(4), 483-507 (2008) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.