Open Access
Issue
MATEC Web Conf.
Volume 277, 2019
2018 International Joint Conference on Metallurgical and Materials Engineering (JCMME 2018)
Article Number 02027
Number of page(s) 11
Section Data and Signal Processing
DOI https://doi.org/10.1051/matecconf/201927702027
Published online 02 April 2019
  1. Li L I, Lin F, Jun W U., et al Exploiting global and local features for image retrieval[J]. Journal of Central South University, 2018, 25(2):259-276. [CrossRef] [Google Scholar]
  2. Luo Q M, Shi L. Review on image stitching methods[J]. Transducer & Microsystem Technologies, 2017.. [Google Scholar]
  3. Bi J, XU J, Xin Q, Shang D. An Augmented Reality Method Based on SURF and Geographic Grid Model [J]// JISUANJI YU XIANDAIHUA, 2017(6):47-53. [Google Scholar]
  4. Jianfang X U, Liu Z, Han Z., et al Application of Point Cloud Registration in 3D Reconstruction of Catenary Parts Based on SIFT and LBP[J]. Journal of the China Railway Society, 2017, 39(10):76-81.. [Google Scholar]
  5. Huang D, Zhang G, Ardabilian M., et al 3D Face recognition using distinctiveness enhanced facial representations and local feature hybrid matching[C]// IEEE International Conference on Biometrics: Theory Applications & Systems. IEEE, 2016:1-7. [Google Scholar]
  6. Lin C, Lin J, Chen Q., et al A 3D Reconstruction Method for The Common View Field in New Hybrid Vision System[J]. Machine Design & Research, 2017. [Google Scholar]
  7. Lowe, D.: Distinctive Image Features from Scale-Invariant Keypoints. IJCV 60 (2004) 91-110 [CrossRef] [Google Scholar]
  8. Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: CVPR (2). (2004) 506-513 [Google Scholar]
  9. Bay, H., Tuytelaars, T., Gool, L.: SURF: Speeded Up Robust Features. In: ECCV (2006) 404-417 [Google Scholar]
  10. Milkolajczyk, K., Schmid, C.,: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis & Machine Intelligence (2005) 1615-1630 [Google Scholar]
  11. Benltley, L.: K-D trees for semi-dynamic point sets. In: Symposium on Computational Geometry (1990) 187-197 [Google Scholar]
  12. Nene, S., Nayar S.: A simple algorithm for nearest neighbor seareh in high dimensions. IEEE Transactions 0n Pattern Analysis and Machine Intelligence 19(9), 989-1003(1997) [CrossRef] [Google Scholar]
  13. Silpaanan, C., Hartley, R.: Optimised KD-trees for fast image descriptor matching. In:CVPR. (2008) 1-8 [Google Scholar]
  14. Hu L, Nooshabadi S, Ahmadi M. Parallel randomized KD-tree forest on GPU cluster for image descriptor matching[C]// IEEE International Symposium on Circuits and Systems. IEEE, 2016:582-585. [Google Scholar]
  15. Muja, M., Lowe, D.: Fast approximate nearest neighbors with automatic algorithm configuration. In: ICCV (1). (2009) 331-340 [Google Scholar]
  16. Jagadish, H., Ooi, B., Tan, K., Yu, C., Zhang, R.: Adaptive B+-tree based indexing method for nearest neighbor search. Acm Transaction on Database Systems 30(2), 364-397(2005) [CrossRef] [Google Scholar]
  17. Yu, C., Ooi, B., Tan, K., Jagadish, H.: Indexing the distance-An efficient method to KNN processing. Vldb (2001) [Google Scholar]
  18. Kulis, B., Grauman, K., Kernelized,: Locality-sensitive hashing for scalable image search. In: ICCV(2009) 2130-2137 [Google Scholar]
  19. Chakrabarti A, Satuluri V, Srivathsan A., et al A Bayesian Perspective on Locality Sensitive Hashing with Extensions for Kernel Methods[J]. Acm Transactions on Knowledge Discovery from Data, 2015, 10(2):1-32. [CrossRef] [Google Scholar]
  20. Yang, K, Chen, L., Liu, Y., Fast Image Feature Matching Based on Extended Cascade Original Locality Sensitive Hashing Computer Engineering, 2016, 42(8):21l-219 [Google Scholar]
  21. Image database:http://lear.inrialpes.fr/people/Mikolajczyk/Database/index.ht ml [Google Scholar]
  22. FLANN:https://docs.opencv.org/3.0-beta/modules/flann/doc/flann.html [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.