Open Access
MATEC Web Conf.
Volume 275, 2019
1st International Conference on Advances in Civil Engineering and Materials (ACEM1) and 1st World Symposium on Sustainable Bio-composite Materials and Structures (SBMS1) (ACEM2018 and SBMS1)
Article Number 02007
Number of page(s) 4
Section New Materials and Structural Engineering
Published online 13 March 2019
  1. G. Lilliu, J.G.M.V. Mier, 3D lattice type fracture model for concrete, Eng. Fract. Mech. 70(7–8) (2003) 927-941. [CrossRef] [Google Scholar]
  2. A. Chen, Z. Pan, R. Ma, Mesoscopic simulation of steel rebar corrosion process in concrete and its damage to concrete cover, Struct. Infrastruct. Eng. 13(4) (2017) 478-493. [CrossRef] [Google Scholar]
  3. B. Šavija, M. Luković, J. Pacheco, E. Schlangen, Cracking of the concrete cover due to reinforcement corrosion: A two-dimensional lattice model study, Constr. Build. Mater. 44 (2013) 626-638. [CrossRef] [Google Scholar]
  4. Z. Pan, A. Chen, X. Ruan, Spatial variability of chloride and its influence on thickness of concrete cover: A two-dimensional mesoscopic numerical research, Engineering Structures 95 (2015) 154-169. [CrossRef] [Google Scholar]
  5. Z. Pan, X. Ruan, A. Chen, A 2-D numerical research on spatial variability of concrete carbonation depth at meso-scale, Comput. Concr. 15(2) (2015) 231-257. [CrossRef] [Google Scholar]
  6. Z. Pan, X. Ruan, A. Chen, Chloride diffusivity of concrete: probabilistic characteristics at meso-scale, Comput. Concr. 13(2) (2014) 187-207. [CrossRef] [Google Scholar]
  7. B. Šavija, M. Luković, E. Schlangen, Lattice modeling of rapid chloride migration in concrete, Cem. Concr. Res. 61-62 (2014) 49-63. [CrossRef] [Google Scholar]
  8. B. Šavija, J. Pacheco, E. Schlangen, Lattice modeling of chloride diffusion in sound and cracked concrete, Cem. Concr. Compos. 42 (2013) 30-40. [CrossRef] [Google Scholar]
  9. J.P. Ollivier, J.C. Maso, B. Bourdette, Interfacial Transition Zone in Concrete, Advanced Cement Based Materials 2(1) (1995) 30-38. [CrossRef] [Google Scholar]
  10. K.L. Scrivener, K.M. Nemati, The percolation of pore space in the cement paste/aggregate interfacial zone of concrete, Cem. Concr. Res. 26(1) (1996) 35-40. [CrossRef] [Google Scholar]
  11. S.T. Erdogan, Determination of aggregate shape properties using X-ray tomographic methods and the effect of shape on concrete rheology, The University of Texas at Austin, Austin, US, 2005. [Google Scholar]
  12. Z.P. Bazant, M.R. Tabbara, M.T. Kazemi, G. Pijaudiercabot, Random Particle Model for Fracture of Aggregate or Fiber Composites, J. Eng. Mech. 116(8) (1990) 1686-1705. [CrossRef] [Google Scholar]
  13. X. Ruan, Z. Pan, Mesoscopic simulation method of concrete carbonation process, Struct. Infrastruct. Eng. 8(2) (2012) 99-110. [CrossRef] [Google Scholar]
  14. S. Hafner, S. Eckardt, T. Luther, C. Konke, Mesoscale modeling of concrete: Geometry and numerics, Comput. Struct. 84(7) (2006) 450-461. [CrossRef] [Google Scholar]
  15. J. Han, W. Liu, S. Wang, D. Du, F. Xu, W. Li, G. De Schutter, Effects of crack and ITZ and aggregate on carbonation penetration based on 3D micro X-ray CT microstructure evolution, Constr. Build. Mater. 128 (2016) 256-271. [CrossRef] [Google Scholar]
  16. J. Zheng, X. Zhou, Y. Wu, X. Jin, A numerical method for the chloride diffusivity in concrete with aggregate shape effect, Constr. Build. Mater. 31(6) (2012) 151-156. [CrossRef] [Google Scholar]
  17. H. Samet, M. Tamminen, Efficient component labeling of images of arbitrary dimension represented by linear bintrees, IEEE Transactions on Pattern Analysis & Machine Intelligence 10(4) (1988) 579-586. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.