Open Access
Issue
MATEC Web Conf.
Volume 275, 2019
1st International Conference on Advances in Civil Engineering and Materials (ACEM1) and 1st World Symposium on Sustainable Bio-composite Materials and Structures (SBMS1) (ACEM2018 and SBMS1)
Article Number 01021
Number of page(s) 4
Section Bio-composite Materials and Structures
DOI https://doi.org/10.1051/matecconf/201927501021
Published online 13 March 2019
  1. A. Knop, W. Scheib, Chemistry and application of phenolic resins (Springer, 1979) [CrossRef] [Google Scholar]
  2. N. Cetin, N. ÖZMEN, Use of organosolv lignin in phenol – formaldehyde resins for particleboard production: I. Organosolv lignin modified resins, Int. J. Adhes. Adhes, 22, 6: 477-480 (2002) [CrossRef] [Google Scholar]
  3. L. Pilato, Phenolic resins: a century of progress, (Springer, 2010) [CrossRef] [Google Scholar]
  4. A. Gu, G. Liang, L. Lan, Modification of polyaralkyl–phenolic resin and its copolymer with bismaleimide, J. Appl. Polym. Sci., 59, 6, 975-979 (1996) [CrossRef] [Google Scholar]
  5. P. Saha, S. Manna, R. Sen, D. Roy, B. Adhikari,. Durability of lignocellulosic fibers treated with vegetable oil – phenolic resin. Carbohydrate Polymers, 87, 2, 1628-1636 (2012) [CrossRef] [Google Scholar]
  6. G. Cayl, H. Kusefoglu, Polymerization of linseed oil with phenolic resins. J. Appl. Polym. Sci., 118, 2, 849-856 (2010) [Google Scholar]
  7. V. Turkington, R. Moore, W. Butler, R. Shuey, Phenolic Resin Varnishes Influence of Linseed Oil on Film Properties. Ind. Eng. Chem., 27, 11, 1321-1325 (1935) [CrossRef] [Google Scholar]
  8. C. Kaynak, A. Ozturk, T. Tincer,. Flexibility improvement of epoxy resin by liquid rubber modification. Polym. Int., 51, 9, 749-756 (2002) [CrossRef] [Google Scholar]
  9. Q. Wang, A sandwich three-point bend specimen for testing mode-I interlaminar fracture toughness for fiber-reinforced composite materials. Int. J. Fracture, 85, 3, 231-240 (1997) [CrossRef] [Google Scholar]
  10. H. Zhang, A. Pizzi, X. Lu, Z. Wang, Study of the end-grain butt joints obtained by friction welding of moso bamboo, BioResources, 12, 3, 6446-6457 (2017) [Google Scholar]
  11. H. Zhang, Q. He, X. Lu, A. Pizzi, C. Mei, X. Zhan, Energy Release Rate Measurement of Welded Bamboo Joints, J. Renew. Mater., 6, 5,450-456 (2018). [CrossRef] [Google Scholar]
  12. H. Zhang, A. Pizzi, X. Lu, G. Janin, Palmyra palm bonding by vibrational welding. Eur. J Wood Wood Prod., 72, 5, 693-695(2014) [CrossRef] [Google Scholar]
  13. H. Zhang, H. Luo, X. Lu, Reliability of compression strength of hennon bamboo-reinforced extruded tubular particleboard, BioResources, 9, 2, 2696-2704 (2014) [Google Scholar]
  14. H. Zhang, X. Lu, Modeling of the elastic properties of laminated strand lumber, Wood Res-Slovakia, 59, 1, 1-10 (2014) [Google Scholar]
  15. H. Zhang, J. Liu, X. Lu, Reducing the formaldehyde emission of composite wood products by cold plasma treatment. Wood Res-Slovakia, 58, 4, 607-616 (2013) [Google Scholar]
  16. H. Zhang, A. Pizzi, X. Lu, X. Zhou, Optimization of tensile shear strength of linear mechanically welded outer-to-inner flattened moso bamboo (Phyllostachys pubescens). BioResources, 9, 2, 2500-2508 (2014) [Google Scholar]
  17. H. Zhang, A. Pizzi, X. Zhou, X. Lu, Z. Wang, The study of linear vibrational welding of moso bamboo. J. Adhes. Sci. and Techno., 32, 1, 1-10 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.