Open Access
Issue
MATEC Web Conf.
Volume 275, 2019
1st International Conference on Advances in Civil Engineering and Materials (ACEM1) and 1st World Symposium on Sustainable Bio-composite Materials and Structures (SBMS1) (ACEM2018 and SBMS1)
Article Number 01012
Number of page(s) 8
Section Bio-composite Materials and Structures
DOI https://doi.org/10.1051/matecconf/201927501012
Published online 13 March 2019
  1. G. Schickhofer, Cross Laminated Timber (CLT) in Europe-From Conception to Implementation, Presentation, Vancouver, Canada, 2010. [Google Scholar]
  2. EN 16351, Timber Structures-Cross Laminated Timber-Requirements, European Committee for Standardization, Brussels, 2015. [Google Scholar]
  3. R. Steiger, A. Gülzow, C. Czaderski, M. Howald, P. Niemz, Comparison of bending stiffness of cross-laminated solid timber derived by modal analysis of full panels and by bending tests of strip-shaped specimens, Eur. J. Wood Wood Prod, 70(2012), 141-153. [CrossRef] [Google Scholar]
  4. S. Gagnon, C. Pirvu (Eds.), CLT Handbook: Cross-Laminated Timber, FPInnovations, Vancouver, BC, Canada, 2011. [Google Scholar]
  5. P. Fellmoser, H.J. Blaß, Influence of rolling shear modulus on strength and stiffness of structural bonded timber elements , in: Proceeding of CIB-W18 Meeting, Edinburgh, United Kingdom, (2004), 37-6-5. [Google Scholar]
  6. M. Gong, D.Y. Tu, L. Li, Y.H. Chui, Planar shear properties of hardwood cross layer in hybrid cross laminated timber , in: Proceeding of the 5th International scientific conference on hardwood processing, Quebec City, Canada, Sept, (2015), 15-17. [Google Scholar]
  7. Z. Wang, H. Fu, M. Gong, Planar shear and bending properties of hybrid CLT fabricated with lumber and LVL, Construction and Building Materials, 151(2017), 172–177. [CrossRef] [Google Scholar]
  8. L.L.Beranek. Noise Reduction, McGraw-Hill Book, (1960). [Google Scholar]
  9. E Karacabeyli, B Douglas, CLT handbook: cross-laminated timber, FPInnovations and American Wood Council, USA Edition. (2013). [Google Scholar]
  10. L Hu. CLT Buildings sound insulation, WCTE, (2012). [Google Scholar]
  11. R.J. M.Craik. Sound transmission through building using statistical energy analysis, Gower Publishing Limited UK, (1996). [Google Scholar]
  12. C. Zwikker, C. W. Kosten. Sound Absorbing Materials, Amsterdam: Elsevier, (1949). [Google Scholar]
  13. K. Attenborough. Acoustical characteristics of porous materials, Phys, 82(1982), 179-227. [Google Scholar]
  14. K. Attenborough. Acoustical characteristics of rigid fibrous absorbents and granular materials, J Acoust Soc Am, 73(1983), 785-799. [CrossRef] [Google Scholar]
  15. Biot A. Theory of propagation of elastic waves in a fluid-saturated porous solid-I: low-frequencyrange, J Acoust Soc Am, 28(1956), 168-178. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. F. Allard. Propagation of sound in porous Media, London and New York: Elsevier Applied Science (1993). [CrossRef] [Google Scholar]
  17. D.K. Wilson, Relaxation-matched modeling of propagation through porous media including fractal pore structure, J Acoust Soc Am, 94(1993), 1136-1145. [CrossRef] [Google Scholar]
  18. B. Fucheng, H. Li. Three dimensional flow resistance network of longitudinal gas permeation in coniferous wood, Forest science, 38(2002), 111-116. [Google Scholar]
  19. J. Zehui, H. Qian, Z. Tianyi. Sound insulation simulation of softwood and wood composites, Wood. Sci. (In Processing) [Google Scholar]
  20. H. Bryan, J. Stuart Bolton. A transfer-matrix approach for estimating the characteristic impedance and wave numbers of limp and rigid porous materials, J.Acoust. Soc. Am, 107(2000), 1131-1152. [CrossRef] [Google Scholar]
  21. Z. Zhenguo, Z. Xiuli, Z. Na. Study on sound insulation properties of materials by transfer matrix standing wave tube method, Materials Herald, 5(2010), 118-121. [Google Scholar]
  22. W. Xinzhou, Nanoscale investigation of the interfacial properties and modification mechanism of wood-adhesive interphase, Nanjing Forestry University, (2016). [Google Scholar]
  23. L. Xiaoning, C. Yucong, C. Ying. The Prediction of Elastic Modulus Along the Grain of Poplar Veneer, Journal of Nanjing Forestry University (Natural Science Edition), 3(2002), 9-13. [Google Scholar]
  24. L. Xiaoning, W. Zhiqaing, D. Yicheng, G. Weijei. The Prediction of In-plane Shearing Modulus of Poplar Veneer, Journal of Nanjing Forestry University (Natural Science Edition), 1(2006), 93-94. [Google Scholar]
  25. L. Xiaoning, H. Helang, D. Yicheng. The Prediction of Elastic Modulus in Tangential Direction of Poplar Veneer, Journal of Nanjing Forestry University (Natural Science Edition), 2(2003), 21-24. [Google Scholar]
  26. C. Jianqiao. Introduction to mechanics of composite materials, Science Press Co.Ltd. CHINA Edition. (2006). [Google Scholar]
  27. B.M. Suleiman, J. Larfeldt, J. Leckner, M. Gustavsson, Thermal conductivity and diffusivity of wood, Wood. Sci. Technol, 33(1999), 465-473. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.