Open Access
MATEC Web Conf.
Volume 273, 2019
International Cross-industry Safety Conference (ICSC) - European STAMP Workshop & Conference (ESWC) (ICSC-ESWC 2018)
Article Number 02006
Number of page(s) 19
Section European STAMP Workshop & Conference
Published online 22 February 2019
  1. Abrecht, B., Arterburn, D., Horney, D., Schneider, J., Abel, B., & Leveson, N. (2016). A New Approach to Hazard Analysis for Rotorcraft. Paper presented at the Proceedings of the 2016 American Helicopter Society Technical Meeting, Huntsville, AL. [Google Scholar]
  2. Allison, C. K., Revell, K. M., Sears, R., & Stanton, N. A. (2017). Systems Theoretic Accident Model and Process (STAMP) safety modelling applied to an aircraft rapid decompression event. Safety science, 98, 159-166. [CrossRef] [Google Scholar]
  3. Campos, M., Takahashi, T., Ashikawa, F., Simões, S., Stender, A., & Meien, O. (2015). Advanced anti-slug control for offshore production plants. IFAC-PapersOnLine, 48(6), 83-88. [CrossRef] [Google Scholar]
  4. Chen, J., Zhang, S., Lu, Y., & Tang, P. (2015). STPA-based hazard analysis of a complex UAV system in take-off. Paper presented at the International Conference on Transportation Information and Safety (ICTIS). [Google Scholar]
  5. de Oliveira, V., Jäschke, J., & Skogestad, S. (2015). An autonomous approach for driving systems towards their limit: an intelligent adaptive anti-slug control system for production maximization. IFAC-PapersOnLine, 48(6), 104-111. [CrossRef] [Google Scholar]
  6. Di Meglio, F., Kaasa, G.-O., Petit, N., & Alstad, V. (2010). Model-based control of slugging flow: an experimental case study. Paper presented at the American Control Conference (ACC), 2010. [Google Scholar]
  7. Godhavn, J.-M., Fard, M. P., & Fuchs, P. H. (2005). New slug control strategies, tuning rules and experimental results. Journal of process control, 15(5), 547-557. [CrossRef] [Google Scholar]
  8. Hackl, C. (2012). Non-identifier based adaptive control in mechatronics. [Google Scholar]
  9. Havre, K., Stornes, K. O., & Stray, H. (2000). Taming slug flow in pipelines. ABB review, 4, 55-63. [Google Scholar]
  10. Hedne, P., & Linga, H. (1990). Suppression of terrain slugging with automatic and manual riser choking. Advances in Gas-Liquid Flows, 155(19), 453-460. [Google Scholar]
  11. Hill, T., & Wood, D. (1994). Slug flow: Occurrence, consequences, and prediction. Paper presented at the University of Tulsa Centennial Petroleum Engineering Symposium. [Google Scholar]
  12. Hovakimyan, N., & Cao, C. (2010). L1 adaptive control theory: guaranteed robustness with fast adaptation (Vol. 21): SIAM-Society for Industrial and Applied Mathematics. [CrossRef] [Google Scholar]
  13. Ishimatsu, T., Leveson, N. G., Thomas, J., Katahira, M., Miyamoto, Y., & Nakao, H. (2010). Modeling and hazard analysis using STPA. Paper presented at the 4th IAASS Conference, Huntsville, Alabama. [Google Scholar]
  14. Jahanshahi, E., & Skogestad, S. (2011). Simplified dynamical models for control of severe slugging in multiphase risers. IFAC Proceedings Volumes, 44(1), 1634-1639. [CrossRef] [Google Scholar]
  15. Jahanshahi, E., & Skogestad, S. (2013). Closed-loop model identification and pid/pi tuning for robust anti-slug control. IFAC Proceedings Volumes, 46(32), 233-240. [CrossRef] [Google Scholar]
  16. Jahanshahi, E., Skogestad, S., & Grøtli, E. I. (2013). Nonlinear model-based control of two-phase flow in risers by feedback linearization. [Google Scholar]
  17. Kim, H., Lundteigen, M., Hafver, A., Pedersen, F., & Skofteland, G. (2018). Application of System-Theoretic Process Analysis to the Isolation of Subsea Wells: Opportunities and Challenges of Applying STPA to Subsea Operations. Paper presented at the Offshore Technology Conference. [Google Scholar]
  18. Kim, H., Lundteigen, M. A., Hafver, A., Pedersen, F. B., Skofteland, G., Holden, C., & Ohrem, S. J. (2018). Application of Systems-Theoretic Process Analysis to a Subsea Gas Compression System. Paper presented at the European Safety and Reliability Conference (ESREL 2018), Trondheim, Norway. [Google Scholar]
  19. Krstic, M., Kanellakopoulos, I., & Kokotovic, P. V. (1995). Nonlinear and adaptive control design (Vol. 222): Wiley New York. [Google Scholar]
  20. Leveson, N. (2012). Engineering a safer world: Systems thinking applied to safety: MIT press. [CrossRef] [Google Scholar]
  21. Leveson, N., & Thomas, J. (2013). An STPA primer. Retrieved from Cambridge, MA: [Google Scholar]
  22. Leveson, N., & Thomas, J. (2018). STPA Handbook. Retrieved from Boston, MA, USA: [Google Scholar]
  23. Nakao, H., Katahira, M., Miyamoto, Y., & Leveson, N. (2011). Safety guided design of crew return vehicle in concept design phase using STAMP/STPA. Paper presented at the Proc. of the 5: th IAASS Conference. [Google Scholar]
  24. O’Dwyer, A. (2009). Handbook of PI and PID controller tuning rules: Imperial College Press. [CrossRef] [Google Scholar]
  25. Ohrem, S. J., Holden, C., Jahanshahi, E., & Skogestad, S. (2017)ℒ. 1 adaptive anti-slug control. Paper presented at the American Control Conference (ACC), 2017. [Google Scholar]
  26. Schmittner, C., Ma, Z., & Puschner, P. (2016). Limitation and Improvement of STPA-Sec for Safety and Security Co-analysis. Paper presented at the International Conference on Computer Safety, Reliability, and Security, 22 Sep. 2015, Delft, Netherlands. [Google Scholar]
  27. The MathWorks Inc., N., Massachusetts, United States. (2018). MATLAB 2018b (Version 2018b). [Google Scholar]
  28. Young, W. E. (2014). STPA-SEC for cyber security mission assurance. Eng Syst. Div. Syst. Eng. Res. Lab. [Google Scholar]
  29. Åström, K. J. (1983). Theory and applications of adaptive control- A survey. Automatica, 19(5), 471-486. [CrossRef] [Google Scholar]
  30. Åström, K. J., & Hägglund, T. (2001). The future of PID control. Control engineering practice, 9(11), 1163-1175. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.