Open Access
MATEC Web Conf.
Volume 273, 2019
International Cross-industry Safety Conference (ICSC) - European STAMP Workshop & Conference (ESWC) (ICSC-ESWC 2018)
Article Number 01001
Number of page(s) 12
Section International Cross-industry Safety Conference
Published online 22 February 2019
  1. Bell, V., Halligan, P. W., & Ellis, H. D. (2006). Diagnosing Delusions: A Review of Inter-Rater Reliability. Schizophrenia Research, 86, 76-79. doi: [CrossRef] [Google Scholar]
  2. Coombs, T. W., & Holladay, S. J. (2010). The Handbook of Crisis Communication. USA: WILEYBLACKWELL Publishing Ltd. [CrossRef] [Google Scholar]
  3. de Wilde, T. R., Ten Velden, F. S., & De Dreu, C. K. (2018). The Anchoring-Bias in Groups. Journal of Experimental Social Psychology, 116-126. doi:10.1016/j.jesp.2018.02.001 [CrossRef] [Google Scholar]
  4. Dekker, S. W. (2002). Reconstructing Human Contributions to Accidents: The New View on Error and Performance. Journal of Safety Research, 33, 371-385. [CrossRef] [Google Scholar]
  5. Dekker, S. W. (2007). Six Stages To The New View of Human Error. Safety Monitor, 11(1), 1-5. Retrieved July 23, 2018, from an_error [Google Scholar]
  6. Dekker, S. W. (2014). The Field Guide to Understanding Human Error. In S. Dekker, The Field Guide to Understanding Human Error. Surrey, United Kingdom: Ashgate Publishing Limited. [Google Scholar]
  7. Evans, J. K. (2007). An Application of CICCT Categories to Aviation Accidents in 1988-2004. NASA/CR-2007-214888. Hanover, MD: US National Aeronautics and Space Administration. [Google Scholar]
  8. Fforde, A. (2017). Confirmation Bias: Methodological Causes and a Palliative Response. Quality and Quantity, 51(3), 2319-2335. doi: [CrossRef] [Google Scholar]
  9. Greene, E., & Ellis, L. (2007). Decision Making in Criminal Justice. In D. Carson, B. Milne, F. Pakes, K. Shalev, & A. Shawyer, Applying Psychology to Criminal Justice (pp. 183-200). Chichester: Wiley. doi: [CrossRef] [Google Scholar]
  10. Gwet, K. L. (2008). Computing Inter-Rater Reliability and Its Variance in the Presence of High Agreement. British Journal of Mathematical and Statistical Psychology, 61, 29-48. doi: [CrossRef] [Google Scholar]
  11. Heinrich, H. W. (1931). Industrial Accident Prevention: A Scientific Approach (1st ed.). New York: McGraw-Hill. [Google Scholar]
  12. Hollnagel, E. (2012). FRAM, The Functional Resonance Analysis Method: Modelling Complex Socio-Technical Systems. Ashgate Publishing, Ltd. [Google Scholar]
  13. Hollnagel, E. (2013). A Tale of Two Safeties. Nuclear Safety and Simulation, 4(1), 1-9. Retrieved July 23, 2018, from [Google Scholar]
  14. Hollnagel, E. (2014a). Is Safety a Subject for Science? Safety Science, 67, 21-24. doi: [CrossRef] [Google Scholar]
  15. Hollnagel, E. (2014b). Safety-I and Safety-II: The Past and Future of Safety Management. Farnham, UK: Ashgate Publishing Limited. [Google Scholar]
  16. Hollnagel, E., Wears, R. L., & Braithwaite, J. (2015). From Safety-I to Safety-II: A White Paper. University of Southern Denmark, University of Florida, USA, Macquarie University, Australia. [Google Scholar]
  17. Hollnagel, E., Woods, D. D., & Leveson, N. C. (2006). Resilience Engineering: Concepts and Precepts. Aldershot, UK: Ashgate. [Google Scholar]
  18. IBM. (2013). IBM SPSS Statistics for Windows version 22. Armonk, NY: IBM Corp. [Google Scholar]
  19. International Air Transport Association-IATA. (2018). Safety Report 2017 (54th ed.). Montreal: International Air Transport Association. Retrieved September 22, 2018, from [Google Scholar]
  20. International Civil Aviation Organization-ICAO. (2001). Aircraft Accident and Incident Investigation -Annex 13. ICAO. Retrieved September 19, 2018, from [Google Scholar]
  21. International Civil Aviation Organization-ICAO. (2018). Safety Report. Montreal: International Civil Aviation Organization. Retrieved September 22, 2018, from [Google Scholar]
  22. Kanyongo, G. Y., Brook, G. P., Kyei-Blankson, L., & Gocmen, G. (2007). Reliability and Statistical Power: How Measurement Fallibility Affects Power and Required Sample Sizes for Several Parametric and Nonparametric Statistics. Journal of Modern Applied Statistical Methods, 6(1), 81-90. doi: [CrossRef] [Google Scholar]
  23. Karanikas, N. (2015). Human Error Views: A Framework for Benchmarking Organizations and Measuring the Distance between Academia and Industry. Proceedings of the 49th ESReDA Seminar, 29-30 October 2015. Brussels, Belgium. [Google Scholar]
  24. Karanikas, N., & Nederend, J. (2018). The Controllability Classification of Safety Events and Its Application to Aviation Investigation Reports. Safety Science, 108, 89-103. doi: [CrossRef] [Google Scholar]
  25. Karanikas, N., Soltani, P., de Boer, R. J., & Roelen, A. (2015). Evaluating Advancements in Accident Investigations Using a Novel Framework. Proceedings of the 5th Air Transport and Operations Symposium (ATOS), 20-22 July 2015. Delft University of Technology, Netherlands. [Google Scholar]
  26. Kaspers, S., Karanikas, N., Roelen, A. C., Piric, S., & de Boer, R. J. (2016). Review of Existing Aviation Safety Metrics, RAAK PRO Project: Measuring Safety in Aviation, Project number: S10931. The Netherlands: Aviation Academy, Amsterdam University of Applied Sciences. [Google Scholar]
  27. Kassin, S. M., Dror, I. E., & Kukucka, J. (2013). The Forensic Confirmation Bias: Problems, Perspectives, and Proposed Solutions. Journal of Applied Research in Memory and Cognition, 42-52. doi: [CrossRef] [Google Scholar]
  28. Lekberg, A. K. (1997). Different Approaches to Incident Investigation-How the Analyst Makes. Hazard Prevention, 33(4), 10-13. [Google Scholar]
  29. Leveson, N. G. (2004). A New Accident Model for Engineering Safer Systems. Safety Science, 42(4), 237-270. doi: [Google Scholar]
  30. Leveson, N. G. (2011). Applying Systems Thinking to Analyse and Learn from Events. Safety Science, 49, 55-64. doi: [CrossRef] [Google Scholar]
  31. Li, W. C., & Harris, D. (2005). HFACS Analysis of ROC Air Force Aviation Accidents: Reliability Analysis and Cross-Cultural Comparison. International Journal of Aviation Studies, 5(1), 65-81. [Google Scholar]
  32. Li, W. C., Harris, D., & Chen, A. (2007). Eastern Minds in Western Cockpits: Meta-Analysis of Human Factors in Mishaps from Three Nations. Aviation, Space, Environmental Medicine, 78(4), 420-425. [Google Scholar]
  33. Madsen, P. M., & Desai, V. (2010). Failing to Learn? The Effects of Failure and Success on Organizational Learning in the Global Orbital Launch Vehicle Industry. Academy of Management Journal, 53(3), 451-476. doi: [CrossRef] [Google Scholar]
  34. Martinetti, A., Chatzimichailidou, M. M., Maida, L., & van Dongen, L. (2018). Safety I-II, Resilience and Antifragility Engineering: A Debate Explained through an Accident Occurring on a Mobile Elevating Work Platform. International Journal of Occupational Safety and Ergonomics. doi: [Google Scholar]
  35. Microsoft Corporation. (2013). Microsoft Excel 2013. Santa Roza, California: Microsoft Office Professional Plus 2013. [Google Scholar]
  36. Plioutsias, A. & Karanikas, N. & Tselios, D. (2018). Decreasing the Distance Between International Standards from Different Domains: The Case of Project Management and Aviation Safety Investigations, Proceedings of the International Cross-industry Safety Conference, 2-3 November 2017, Aviation Academy, Amsterdam University of Applied Sciences, AUP Advances, 1(1), pp. 7-39, doi: [Google Scholar]
  37. Reason, J. (1990). Human Error. New York: Cambridge University Press. [CrossRef] [Google Scholar]
  38. Tversky, A., & Kahneman, D. (1974). Judgement under uncertainty: Heuristics and Biases. Science, 185, 1124-1131. [CrossRef] [PubMed] [Google Scholar]
  39. Wiegmann, D. A., & Shappell, S. A. (2003). A Human Error Approach to Aviation Accident Analysis: The Human Factors Analysis and Classification System. Burlington, VT: Ashgate Publishing, Ltd. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.