Open Access
Issue
MATEC Web Conf.
Volume 271, 2019
2019 Tran-SET Annual Conference
Article Number 01011
Number of page(s) 4
Section Structural
DOI https://doi.org/10.1051/matecconf/201927101011
Published online 09 April 2019
  1. Mirsayar, M.M., Huang, K., and Zollinger, D.G. (2016). New Approach to Determining Concrete Slab Lift-Off by Use of Interfacial Fracture Mechanics Concepts. Transportation Research Record: Journal of the Transportation Research Board, 2590, 10–17. [CrossRef] [Google Scholar]
  2. Janke, L., Czarderski, C., Motavalli, M., and Ruth, J. (2005). Application of Shape Memory Alloys in Civil Engineering Structures-Overview, Limits, and New Ideas. Materials and Structures, 38, 578–502. [Google Scholar]
  3. Hartl, D.J., and Lagoudas, D.C. (2007). Aerospace applications of shape memory alloys. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221, 535–552. [CrossRef] [Google Scholar]
  4. Czaderski, C., Shahverdi, M., Brönnimann, R., Leinenbach, C., and Motavalli, M. (2014). Feasibility of iron-based shape memory alloy strips for prestressed strengthening of concrete structures. Construction and Building Materials, 56, 94–105. [CrossRef] [Google Scholar]
  5. Lagoudas, Dimitris C. (2011). Shape Memory Alloys: Modeling and Engineering Applications. Springer. [Google Scholar]
  6. Smith M. (2009). ABAQUS/Standard User’s Manual, Version 6.9. Providence, RI: Simula. [Google Scholar]
  7. AASHTO LRFD bridge design specifications, Part I: Sections 1-6, Washington, DC: American Association of State Highway and Transportation Officials, 2017. [Google Scholar]
  8. Lecce, L. (2015). Shape memory alloy engineering: for aerospace, structural and biomedical applications, Amsterdam: Elsevier. [Google Scholar]
  9. Omori, T., Ando, K., Okano, M., Xu, X., Tanaka, Y., Ohnuma, I., Kainuma, R., and Ishida, K. (2011). Superelastic Effect in Polycrystalline Ferrous Alloys. Science, 333, 68–71. [CrossRef] [Google Scholar]
  10. Cladera, A., Weber, B., Leinenbach, C., Czaderski, C., Shahverdi, M., and Motavalli, M. (2014). Iron-based shape memory alloys for civil engineering structures: An overview. Construction and Building Materials, 63, 281–293. [CrossRef] [Google Scholar]
  11. Lee, H.J., and Lee, J.J. (2000). A numerical analysis of the buckling and postbuckling behavior of laminated composite shells with embedded shape memory alloy wire actuators. Smart Materials and Structures, 9, 780–787. [CrossRef] [Google Scholar]
  12. Qidwai, M.A.S., Hartl, D.J., and Lagoudas, D.C. (2000). Numerical Implementation of an SMA Thermomechanical Constitutive Model Using Return Mapping Algorithms. Shape Memory Alloys, 47, 189–231. [Google Scholar]
  13. Soufeiani, L., Raman, S.N., Jumaat, M.Z.B., Alengaram, U.J., Ghadyani, G., and Mendis, P. (2016). Influences of the volume fraction and shape of steel fibers on fiber-reinforced concrete subjected to dynamic loading – A review. Engineering Structures, 124, 405–417. [CrossRef] [Google Scholar]
  14. Lagoudas, D., Hartl, D., Chemisky, Y., Machado, L., and Popov, P. (2012). Constitutive model for the numerical analysis of phase transformation in polycrystalline shape memory alloys. International Journal of Plasticity, 32, 155–183. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.