Open Access
Issue
MATEC Web Conf.
Volume 270, 2019
The 2nd Conference for Civil Engineering Research Networks (ConCERN-2 2018)
Article Number 06004
Number of page(s) 7
Section Infrastructure Engineering and Management
DOI https://doi.org/10.1051/matecconf/201927006004
Published online 22 February 2019
  1. C.C. Dutra, J.L.D. Ribeiro, M.M. de Carvalho, An economic-probabilistic model for project selection and prioritization, Int. J. Proj. Manag 32, 1042 (2014) [CrossRef] [Google Scholar]
  2. T. Bakshi, A. Sinharay, B. Sarkar, S.K. Sanyal, Introduction to soft-set theoretic solution of project selection problem, BIJ 23(7), 1643 (2016) [Google Scholar]
  3. K. Salehi, A hybrid fuzzy MCDM approach for project selection problem, DSL, 4, 109 (2015) [CrossRef] [Google Scholar]
  4. M.W. Lifson, E.F. Shaifer, Decision and Risk Analysis for Construction Management (Wiley, New York, 1982) [Google Scholar]
  5. A. Purnus, C-N. Bodea, Project prioritization and portfolio performance measurement in project oriented organizations, Procd. Soc. Behv 119, 339 (2014) [CrossRef] [Google Scholar]
  6. Standards Australia Guide: Project Prioritisation Process and Criteria (2017) [Google Scholar]
  7. J.D. Frame, Project Finance: Tools & Techniques (UMT Press, 2003) [Google Scholar]
  8. CDIA, City Infrastructure Investment Programming & Prioritisation Toolkit: User Manual (2010) [Google Scholar]
  9. Infrastructure Australia, Assessment Framework - For Initiatives and Projects to be included in the Infrastructure Priority List (2017) [Google Scholar]
  10. Infrastructure New South Wales, Infrastructure Investor Assurance Framework - Gateway Coordination Agency Framework for Capital Projects under the NSW Gateway Policy (2016) [Google Scholar]
  11. KPPIP, Proyek Strategis Nasional (2016, retrieved from https://kppip.go.id/proyek-strategis-nasional/) [Google Scholar]
  12. Queensland Treasury, The State of Queensland Project Assessment Framework (2015) [Google Scholar]
  13. W. Pan, A.R.J. Dainty, A.G.F. Gibb, Establishing and weighting decision criteria for building system selection in housing construction, J. Constr. Eng. Manage 138(11), 1239 (2012) [CrossRef] [Google Scholar]
  14. Y. Le, M. Shan, A.P.C. Chan, Y. Hu, Overview of Corruption Research in Construction, J. Manage. Eng 30(4), 02514001 (2014) [CrossRef] [Google Scholar]
  15. R. Osei-Kyei, A.P.C. Chan, Review of studies on the critical success factors for Public-Private Partnership (PPP) projects from 1990 to 2013, Int. J. Proj. Manag 33, 1335 (2015) [CrossRef] [Google Scholar]
  16. A.P.C. Chan, E.K. Owusu, Corruption forms in the construction industry: literature review, J. Constr. Eng. Manage 143(8), 04017057 (2017) [CrossRef] [Google Scholar]
  17. A. Bryman, E. Bell, Business Research Methods 4th Edition (Oxford University Press, New York, 2015) [Google Scholar]
  18. V. Braun, V. Clarke, Using Thematic Analysis in Psychology, Qual. Res. Psychol 3(2), 77 (2006) [CrossRef] [Google Scholar]
  19. E.Z.H. Zheng, M.M. de Carvalho, Managing uncertainty in projects: a review, trends and gaps, GeP 7(2), 95 (2016) [CrossRef] [Google Scholar]
  20. M. Yadollahi, R. Zin, Applied Multi-Criteria Ideal Rehabilitation Model for Budget Allocation Across Road Infrastructure, IJIS 3(4), 193 (2011) [Google Scholar]
  21. S.G.R. Quadros, C.D. Nassi, An evaluation on the criteria to prioritize transportation infrastructure investments in Brazil, Transp. Policy 40, 8 (2015) [CrossRef] [Google Scholar]
  22. Sutardi, I.C. Goulter, Governmental Priorities in Irrigation Project Selection in Indonesia, J. Water Resour. Plann. Manage 119(3), 406 (1993) [CrossRef] [Google Scholar]
  23. F. Arif, m.e. Bayraktar, A.G. Chowdhury, Decision Support Framework for Infrastructure Maintenance Investment Decision Making, J. Manage. Eng. 32(1), 04015030 (2016) [CrossRef] [Google Scholar]
  24. CII, PDRI: Project Definition Rating Index - Infrastructure Projects (The University of Texas at Austin, 2013) [Google Scholar]
  25. S. Lindhard, S. Wandahl, Looking for Improvement in Last Planner System: Defining Selection Criteria, ICCREM ASCE, 27 (2013) [Google Scholar]
  26. H. Blocksidge, J. Zurawski, Pipe Selection Criteria for Trenchless Projects: Microtunneling to Large Tunnels, Pipelines ASCE (2007) [Google Scholar]
  27. E. Cheung, A.P.C. Chan, Is BOT the best financing model to procure infrastructure projects?: a case study of the Hong Kong-Zhuhai-Macau Bridge, JPIF 27(3), 290 (2009) [Google Scholar]
  28. H. Doloi, Assessing stakeholders’ influence on social performance of infrastructure projects, Facilities 30(11/12), 531 (2012) [CrossRef] [Google Scholar]
  29. T-A. Shiau, Evaluating transport infrastructure decisions under uncertainty, Transport Plan Techn. 37(6), 525 (2014) [CrossRef] [Google Scholar]
  30. P.M. Goodrum, Y.Wan, P.C. Fenouil, A decision-making system for accelerating roadway construction, Eng. Constr. Arc. Manage. 16(2), 116 (2009) [CrossRef] [Google Scholar]
  31. OECD, Towards a framework for the governance of infrastructure (2015) [Google Scholar]
  32. N. Sciulli, Public private partnerships: an exploratory study in health care, Asian Rev. Acc 16(1), 21 (2008) [CrossRef] [Google Scholar]
  33. K.C. Iyer, R. Balamurugan, Evaluation of private sector participation models in highway infrastructure in India - a system dynamics approach, J. Adv. Manage Res 3(1), 44 (2006) [CrossRef] [Google Scholar]
  34. C. Nnaji, H.W. Lee, A. Karakhan, J. Gambatese, Developing a Decision-Making Framework to Select Safety Technologies for Highway Construction, J. Constr. Eng. Manage 144(4), 04018016 (2018) [CrossRef] [Google Scholar]
  35. Z. Chen, H. Li, A. Ross, M.M.A. Khalfan, S.C.W. Kong, Knowledge-driven ANP approach to vendors evaluation for sustainable construction, J. Constr. Eng. Manage 134(12), 928 (2008) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.