Open Access
Issue
MATEC Web Conf.
Volume 268, 2019
The 25th Regional Symposium on Chemical Engineering (RSCE 2018)
Article Number 06015
Number of page(s) 5
Section Process for Energy and Environment
DOI https://doi.org/10.1051/matecconf/201926806015
Published online 20 February 2019
  1. Tabelin, C.B., Igarashi, T., Villacorte-Tabelin, M., Park, I., Opiso, E.M., Ito, M. and Hiroyoshi, N. Arsenic, selenium, boron, lead, cadmium, copper, and zinc in naturally contaminated rocks: A review of their sources, modes of enrichment, mechanisms of release, and mitigation strategies, Science of the Total Environment 645, 2018, 1522–1553. [Google Scholar]
  2. Satur, J., Hiroyoshi, N., Tsunekawa, M., Ito, M. and Okamoto, H. Carrier-microencapsulation for preventing pyrite oxidation, International Journal of Mineral Processing 83 (3–4), 2007, 116–124. [CrossRef] [Google Scholar]
  3. Jha, R.K.T., Satur, J., Hiroyoshi, N., Ito, M. and Tsunekawa, M. Carrier-microencapsulation using Si– catechol complex for suppressing pyrite floatability, Minerals Engineering 21(12–14), 2008, 889–893. [CrossRef] [Google Scholar]
  4. Park, I., Tabelin, C.B., Magaribuchi, K., Seno, K., Ito, M. and Hiroyoshi, N. Suppression of the release of arsenic from arsenopyrite by carrier-microencapsulation using Ti-catechol complex, Journal of Hazardous Materials 344, 2018, 322–332. [CrossRef] [Google Scholar]
  5. Park, I., Tabelin, C.B., Seno, K., Jeon, S., Ito, M. and Hiroyoshi, N. Simultaneous suppression of acid mine drainage formation and arsenic release by Carrier-microencapsulation using aluminum-catecholate complexes, Chemosphere 205, 2018, 414–425. [CrossRef] [Google Scholar]
  6. McKibben, M.A., Tallant, B.A. and de Angel, J.K. Kinetics of inorganic arsenopyrite oxidation in acidic aqueous solutions, Applied Geochemistry 23, 2008, 121–135. [CrossRef] [Google Scholar]
  7. Almedia, C.M.V.B. and Giannetti, B.F. Electrochemical study of arsenopyrite weathering, Physical Chemistry Chemical Physics 5, 2003, 604–610. [CrossRef] [Google Scholar]
  8. Urbano, G., Reyes, V.E., Veloz, M.A., González, I. Cruz, J. Pyrite–arsenopyrite galvanic interaction and electrochemical reactivity, The Journal of Physical Chemistry C 112, 2008, 10453–10461. [CrossRef] [Google Scholar]
  9. Nurchi, V.M., Pivetta, T., Lachowicz, J.I. and Crisponi, G. Effect of substituents on complex stability aimed at designing new iron(III) and aluminum(III) chelators, Journal of Inorganic Biochemistry 103, 2009, 227–236. [CrossRef] [Google Scholar]
  10. Kloprogge, J.T., Duong, L.V., Wood, B.J. and Frost, R. XPS study of the major minerals in bauxite: Gibbsite, bayerite and (pseudo-)boehmite, Journal of Colloid and Interface Science 296(2), 2006, 572–576. [CrossRef] [Google Scholar]
  11. Nesbitt, H.W., Muir, I.J. and Pratt, A.R. Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation, Geochimica et Cosmochimica Acta 59(9), 1995, 1773–1786. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.