Open Access
MATEC Web Conf.
Volume 262, 2019
64 Scientific Conference of the Committee for Civil Engineering of the Polish Academy of Sciences and the Science Committee of the Polish Association of Civil Engineers (PZITB) (KRYNICA 2018)
Article Number 04005
Number of page(s) 8
Section Geotechnics
Published online 30 January 2019
  1. D.E. Daniel, Geotechnical Practice for Waste Disposal, Chapman & Hall, London, England, 683 pp. (1997) [Google Scholar]
  2. R.K. Rowe, Long-term performance of contaminant barrier systems, Geotechnique 55, 631–678 (2005) [CrossRef] [Google Scholar]
  3. R.K. Rowe, R.M. Quigley, R.W.I. Brachman, J.R. Booker, Barrier Systems for Waste Disposal Facilities, Taylor & Francis Books Ltd. (E & FN Spon), London, England, 400 pp. (2004) [Google Scholar]
  4. W. F. Van Impe, Environmental Geotechnics: ITC 5 activities. State of the art. In: Environmental Geotechnics, Seco e Pinto (Ed.), A.A. Balkema, Rotterdam, pp. 121–126 (1998) [Google Scholar]
  5. R.W.I. Brachman, A. Sabir, Geomembrane puncture and strains from stones in an underlying clay layer. Geotext. Geomembranes 28, 335–343 (2010) [CrossRef] [Google Scholar]
  6. Q. Xue, Q. Zhang, Z.-Z. Li, K. Xiao, The tension and puncture properties of HDPE geomembrane under the corrosion of leachate. Materials 6, 4109–4121 (2013) [CrossRef] [Google Scholar]
  7. D. Dertmatas, X. Meng, Utilization of fly ash for stabilization/sodification of heavy metal contaminated soils, Eng. Geol. 70, 377–394 (2003) [CrossRef] [Google Scholar]
  8. T.B. Edil, L.K. Sandstrom, P.M. Berthoux, Interaction of inorganic leachate with compacted pozzolanic fly ash, J. Geotech. Geoenviron. Eng. 118, 1410–1430 (1992) [CrossRef] [Google Scholar]
  9. C.T. Nhan, J.W. Graydon, D.W. Kirk, Utilizing coal fly ash as a landfill barrier material, Waste Manage. 16, 587–595 (1996) [CrossRef] [Google Scholar]
  10. M.M. Leppänen, A. Kaartokallio, E. Loukola, Full scale landfill bottom liner test structures at Ämmäaauo Landfill, Espoo, Finland. In: Proceedings of the 7th International Waste Management and Landfill Symposium, Sardinia, Italy (1999) [Google Scholar]
  11. P.V. Sivapullaiah, H. Lakshmikantha, Properties of fly ash as hydraulic barrier, Soil. Sediment. Contam. 13, 489–504 (2004) [CrossRef] [Google Scholar]
  12. K. Zabielska-Adamska, Shear strength parameters of compacted fly ash–HDPE geomembrane interfaces, Geotext. Geomembranes 24, 91–102 (2006) [CrossRef] [Google Scholar]
  13. K. Zabielska-Adamska, M.J. Sulewska, Dynamic CBR test to assess the soil compaction, J. Test. Eval. 53,1028–1036 (2015) [Google Scholar]
  14. K. Zabielska-Adamska, One-dimensional compression and swelling of compacted fly ash. Geotech.Res. (2018) [Google Scholar]
  15. T.D. Stark, A.R. Poeppel, Landfill liner interface strengths from torsional–ring–shear tests, J. Geotech. Eng. 120, 597–615 (1994) [CrossRef] [Google Scholar]
  16. J.E. Dove, D.D. Bents, J. Wang, B. Gao, Particle scale surface interaction of non-dilative interface systems, Geotext. Geomembranes 24, 156–168 (2006) [CrossRef] [Google Scholar]
  17. J.K. Mitchell, Geotechnical surprises – Or are they? J. Geotech. Geoenviron. Eng. 135, 998–1010 (2009) [Google Scholar]
  18. R.B. Seed, R.W. Boulanger, Smooth HDPE–clay liner interface shear strength: compaction effect, J. Geotech. Eng. 117, 686–693 (1991) [CrossRef] [Google Scholar]
  19. I.R. Fleming, J.S. Sharma, M.B. Jogi, Shear strength of geomembrane–soil interface under unsaturated conditions, Geotext. Geomembranes 24, 274–284 (2006) [CrossRef] [Google Scholar]
  20. J.S. Sharma, I.R. Fleming, M.B. Jogi, Measurement of unsaturated soil–geomembrane interface shear parameters, Can. Geotech. J. 44, 78–88 (2007) [CrossRef] [Google Scholar]
  21. K. Zabielska-Adamska, Laboratory compaction of fly ash and fly ash with cement additions, J. Hazard. Mater. 151, 481–489 (2008) [CrossRef] [Google Scholar]
  22. ASTM Standards: D 5321, Standard test method for determining the coefficient of soil and geosynthetic or geosynthetic and geosynthetic friction by the direct shear method, ASTM International, West Conshohocken, PA, USA (2017) [Google Scholar]
  23. H.I. Ling, A. Pamuk, M. Dechasakulsom, Y. Mohri, Ch. Burkr, Interactions between PVC geomembranes and compacted clay, J. Geotech. Geoenviron. Eng. 127, 950–954 (2001) [CrossRef] [Google Scholar]
  24. T.D. O’Rourke, S.J. Druschel, A.N. Netravali, Shear strength characteristic of sand–polymer interfaces, J. Geotech. Eng. 116, 451–469 (1990) [CrossRef] [Google Scholar]
  25. Ch. Hsieh, M.-W. Hsieh, Load plate rigidity and scale effects on the frictional behaviour of sand/geomembrane interfaces, Geotext. Geomembranes 21, 25–47 (2003) [CrossRef] [Google Scholar]
  26. J. J. B. Esterhuizen, G. M. Filz, J. M. Duncan, Constitutive behaviour of geosynthetic interfaces, J. Geotech. Geoenviron. Eng. 127, 834–840 (2001) [CrossRef] [Google Scholar]
  27. J.P. Giroud, J. Darrasse, R.C. Bachus, Hyperbolic expression for soil-geosynthetic or geosynthetic-geosynthetic interface shear strength, Geotext. Geomembranes 12, 275–286 (1993) [CrossRef] [Google Scholar]
  28. P. Punetha, P. Mohanty, M. Samanta, Microstructural investigation on mechanical behavior of soil-geosynthetic interface in direct shear test, Geotext. Geomembranes 45, 197–210 (2017) [CrossRef] [Google Scholar]
  29. E. Cokca, O. Erol, F. Armangil, Effect of compaction moisture content on the shear strength of an unsaturated clay, Geotech. Geol. Eng. 22, 285–297 (2004) [CrossRef] [Google Scholar]
  30. K.L. Fishman, S. Pal, Further study of geomembrane/cohesive soil interface shear behaviour, Geotext. Geomembranes 13, 571–590 (1994) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.