Open Access
Issue
MATEC Web Conf.
Volume 261, 2019
5ième Congrès International Francophone de Mécanique Avancée (CIFMA 2018)
Article Number 06001
Number of page(s) 8
Section Robotics, Automation, and Measurements
DOI https://doi.org/10.1051/matecconf/201926106001
Published online 29 January 2019
  1. Jose de Jesus Rubio, Luis Arturo Soriano, “an asymptotic stable proportional derivative control with sliding mode gravity compensation and with a high gain observer for robotic arms”, the International Journal of Innovative Computing, Information and Control ICIC International, ISSN 1349-4198 Volume 6, Number 10, October 2010 pp. 4513–4525. [Google Scholar]
  2. Le Tien Dung and Hee-Jun Kang, Young-Shick Ro, ‘Robot manipulator modeling in Matlab -Simmechanics with PD control and online Gravity compensation’, IEEE IFOST 2010. [Google Scholar]
  3. Alessandro De Lucaa, Bruno Sicilianob, Loredana Zolloc, ‘PD control with on-line gravity compensation for robots with elastic joints: Theory and experiments’, Automatica 41 (2005) page 1809–1819. [CrossRef] [Google Scholar]
  4. Simionescu I., Ciupitu L. “The static balancing of the industrial robot rms”. Mechanism and Machine Theory, 35, pp.1287–1298 (2000). [CrossRef] [Google Scholar]
  5. F. L. Lewis, C. T. Abdallah, D. M. Dawson, “Control of robot manipulators”, NY 10022, 1993. [Google Scholar]
  6. M. W. Spong, M. Vidyasagar, “Robot Dynamics and Control”, John Wiley & Sons, 1989. [Google Scholar]
  7. Thierry Kittel Ouimet, «Commande d’un bras exos uelette roboti ue à sept degrés de liberté», Montréal, page 1–5, Janvier 2012. [Google Scholar]
  8. Gosselin C., Wang J., “On the design of gravity-compensated six-degree-of-freedom parallel mechanisms,” Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgique, May 1998. [Google Scholar]
  9. Angeles J., Wu C.-J., “The optimum synthesis of en elastic tor ue-compensating cam mechanism,” Mechanism and Machine Theory, 36, pp. 245–259, 2001. [CrossRef] [Google Scholar]
  10. Arai H., Tanie K., Tachi S. “Path tracking control of a manipulator considering tor ue saturation”, IEEE Transactions on Industrial Electronics, Vol. 41, n° 1, pp. 25–31, February 1994. [CrossRef] [Google Scholar]
  11. Arakelian V. “Minimisation des variations périodi ues du couple d’un manipulateur à fré uence fixe par l’optimisation de la trajectoire de la pince”. Mécanique et Industries, 4, pp. 565–568, 2003. [CrossRef] [Google Scholar]
  12. Laura Ryan Rayt And Robert F. Stengel, “A Monte Carlo Approach to the Analysis of Control System Robustness”, Automatica, Vol. 29, No. 1, pp. 229–236, 1993. [CrossRef] [Google Scholar]
  13. Gersende FORT, “Méthodes de Monte Carlo Et Chaînes de Markov pour la simulation”, Mémoire présenté pour l’obtention de l’Habilitation à Diriger les Recherches, Novembre 2009. [Google Scholar]
  14. Diken H. “Effect of mass balancing on the actuator tor ues of a manipulator”. Mechanism and Machine Theory, 30, pp.495–500, 1995. [CrossRef] [Google Scholar]
  15. Frank Boeren, Dennis Bruijnen & Tom Oomen, “Enhancing feedforward controller tuning via instrumental variables: with application to nanopositioning”, 2017. [Google Scholar]
  16. Nathanael Jarassé, ‘Contributions à l’exploitation d’exos uelettes actifs pour la rééducation neuromatrice’, pp. 17–26, November 2011. [Google Scholar]
  17. Simon J.A. Malham, ‘An introduction to Lagrangian and Hamiltonian mechanics’, pp. 3–4, August 23, 2016. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.