Open Access
Issue
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
Article Number 05003
Number of page(s) 9
Section Deep Learning and Big Data Analytic
DOI https://doi.org/10.1051/matecconf/201925505003
Published online 16 January 2019
  1. A. Figueroa and G. Neumann, “Context-aware semantic classification of search queries for browsing community question—answering archives,” Knowledge-Based Systems, vol. 96, pp. 1–13, 2016. [CrossRef] [Google Scholar]
  2. R. Qumsiyeh and Y.-K. Ng, “Searching web documents using a summarization approach,” International Journal of Web Information Systems, vol. 12, pp. 83–101, 2016. [CrossRef] [Google Scholar]
  3. P. H. Cleverley, S. Burnett, and L. Muir, “Exploratory information searching in the enterprise: A study of user satisfaction and task performance,” Journal of the Association for Information Science and Technology, vol. 68, pp. 77–96, 2017. [CrossRef] [Google Scholar]
  4. R. W. White, B. Kules, and S. M. Drucker, “Supporting exploratory search, introduction, special issue, communications of the ACM,” Communications of the ACM, vol. 49, pp. 36–39, 2006. [CrossRef] [Google Scholar]
  5. T. Jiang, “Exploratory search: a critical analysis of the theoretical foundations, system features, and research trends,” in Library and Information Sciences, ed: Springer, 2014, pp. 79–103. [Google Scholar]
  6. M. Tvarožek, “Exploratory search in the adaptive social semantic web,” Information Sciences and Technologies Bulletin of the ACM Slovakia, vol. 3, pp. 42–51, 2011. [Google Scholar]
  7. M. N. Mahdi, A. R. Ahmad, and R. Ismail, “A Real Time Visual Exploratory Search Engine for Information Retrieval in a Cloud,” International Journal of Future Computer and Communication, vol. 4, p. 216, 2015. [CrossRef] [Google Scholar]
  8. A. N. Langville and C. D. Meyer, Google’s PageRank and beyond: The science of search engine rankings: Princeton University Press, 2011. [Google Scholar]
  9. C. D. Manning, P. Raghavan, and H. Schütze, “Introduction to information retrieval,” ed: Cambridge University Press, 2008. [CrossRef] [Google Scholar]
  10. C. Seifert, J. Jurgovsky, and M. Granitzer, “FacetScape: A visualization for exploring the search space,” in Information Visualisation (IV), 2014 18th International Conference on, 2014, pp. 94–101. [Google Scholar]
  11. X. Li, B. J. Schijvenaars, and M. de Rijke, “Investigating queries and search failures in academic search,” Information Processing & Management, vol. 53, pp. 666–683, 2017. [CrossRef] [Google Scholar]
  12. O. Hoeber, “Information Visualization for Interactive Information Retrieval,” in Proceedings of the 2018 Conference on Human Information Interaction&Retrieval, 2018, pp. 371–374. [Google Scholar]
  13. R. W. White, G. Marchionini, and G. Muresan, “Evaluating exploratory search systems: Introduction to special topic issue of information processing and management,” ed: Pergamon, 2008. [Google Scholar]
  14. G. Marchionini, “Exploratory search: from finding to understanding,” Communications of the ACM, vol. 49, pp. 41–46, 2006. [CrossRef] [Google Scholar]
  15. K. Athukorala, D. Głowacka, G. Jacucci, A. Oulasvirta, and J. Vreeken, “Is exploratory search different? A comparison of information search behavior for exploratory and lookup tasks,” Journal of the Association for Information Science and Technology, vol. 67, pp. 2635–2651, 2016. [CrossRef] [Google Scholar]
  16. G. Singer, “Web search engines and complex information needs, Doctoral dissertation,” Doctoral dissertation, 2012. [Google Scholar]
  17. R. W. White and R. A. Roth, “Exploratory search: beyond the query-response paradigm (Synthesis lectures on information concepts, retrieval & services),” Morgan and Claypool Publishers, vol. 3, 2009. [Google Scholar]
  18. H. Cui, J.-R. Wen, J.-Y. Nie, and W.-Y. Ma, “Query expansion for short queries by mining user logs,” IEEE Trans. Knowl. Data Eng, vol. 15, pp. 829–839, 2002. [Google Scholar]
  19. J. Teevan, E. Adar, R. Jones, and M. A. Potts, “Information re-retrieval: repeat queries in Yahoo’s logs,” in Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, 2007, pp. 151–158. [Google Scholar]
  20. R. Jones, B. Rey, O. Madani, and W. Greiner, “Generating query substitutions,” in Proceedings of the 15th international conference on World Wide Web, 2006, pp. 387–396. [Google Scholar]
  21. R. W. White and G. Marchionini, “Examining the effectiveness of real-time query expansion,” Information Processing & Management, vol. 43, pp. 685–704, 2007. [CrossRef] [Google Scholar]
  22. C. Ahlberg, C. Williamson, and B. Shneiderman, “Dynamic queries for information exploration: An implementation and evaluation,” in Proceedings of the SIGCHI conference on Human factors in computing systems, 1992, pp. 619–626. [Google Scholar]
  23. C. Ahlberg and B. Shneiderman, “Visual information seeking: Tight coupling of dynamic query filters with starfield displays,” in Proceedings of the SIGCHI conference on Human factors in computing systems, 1994, pp. 313–317. [Google Scholar]
  24. https://www.Film-Finder.com, 2017. [Google Scholar]
  25. M. J. Bates, “Information search tactics,” Journal of the American Society for information Science, vol. 30, pp. 205–214, 1979. [CrossRef] [Google Scholar]
  26. T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay, “Accurately interpreting clickthrough data as implicit feedback,” in Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval, 2005, pp. 154–161. [Google Scholar]
  27. B. Shneiderman, “The eyes have it: A task by data type taxonomy for information visualizations,” in Visual Languages, 1996. Proceedings., IEEE Symposium on, 1996, pp. 336–343. [Google Scholar]
  28. S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in information visualization: using vision to think: Morgan Kaufmann, 1999. [Google Scholar]
  29. T. Saracevic, “Relevance: A review of the literature and a framework for thinking on the notion in information science. Part III: Behavior and effects of relevance,” Journal of the American Society for Information Science and Technology, vol. 58, pp. 2126–2144, 2007. [CrossRef] [Google Scholar]
  30. Palantir, “https://www.palantir.com,” 2004. [Google Scholar]
  31. F. B. Viegas, M. Wattenberg, F. Van Ham, J. Kriss, and M. McKeon, “Manyeyes: a site for visualization at internet scale,” IEEE transactions on visualization and computer graphics, vol. 13, pp. 1121–1128, 2007. [Google Scholar]
  32. Volkswagen, “http://www.volkswagen.co.uk/find-a-retailer#new,” 2010. [Google Scholar]
  33. D. R. Harris, “Modeling Faceted Browsing with Category Theory for Reuse and Interoperability,” 2017. [Google Scholar]
  34. M. N. Mahdi, A. R. Ahmad, and R. Ismail, “Paradigm Extension of Faceted Search Techniques A Review,” Journal of Telecommunication, Electronic and Computer Engineering (JTEC), vol. 9, pp. 149–153, 2017. [Google Scholar]
  35. K. Doan, C. Plaisant, B. Shneiderman, and T. Bruns, “Query previews for networked information systems: A case study with NASA environmental data,” SIGMOD Record, vol. 26, pp. 75–81, 1997. [CrossRef] [Google Scholar]
  36. E. Tanin, B. Shneiderman, and H. Xie, “Browsing large online data tables using generalized query previews,” Information Systems, vol. 32, pp. 402–423, 2007. [CrossRef] [Google Scholar]
  37. J. Zhang, G. Marchionini, T. Shear, and C. Su, “Relation Browser++: a Fast and Contextualized Searching and Browsing Tool,” 2004. [Google Scholar]
  38. http://ils.unc.edu/relationbrowser/index.php?page=demos, 2017. [Google Scholar]
  39. R. Capra and G. Marchionini, “Faceted Exploratory Search Using the Relation Browser,” in NSF Workshop on Information Seeking Support Systems, 2009, pp. 81–83. [Google Scholar]
  40. B. Lee, G. Smith, G. G. Robertson, M. Czerwinski, and D. S. Tan, “FacetLens: exposing trends and relationships to support sensemaking within faceted datasets,” in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2009, pp. 1293–1302. [Google Scholar]
  41. J. Kehrer and H. Hauser, “Visualization and visual analysis of multifaceted scientific data: A survey,” IEEE transactions on visualization and computer graphics, vol. 19, pp. 495–513, 2013. [CrossRef] [Google Scholar]
  42. w. m. c. FacetLens, 2017. [Google Scholar]
  43. ebay, “http://www.ebay.com,” 2017. [Google Scholar]
  44. ArtistRising, “http://www.artistrising.com/,” 2007. [Google Scholar]
  45. Y. Tzitzikas and E. Dimitrakis, “Preference-enriched Faceted Search for Voting Aid Applications,” IEEE Transactions on Emerging Topics in Computing, 2016. [Google Scholar]
  46. WeFeelFine, “(https://www.wefeelfine.org),” 2017. [Google Scholar]
  47. Flickr, “https://www.flickr.com/,” 2004. [Google Scholar]
  48. https://del.icio.us/, https://del.icio.us/, 2017. [Google Scholar]
  49. M. A. Hearst, “What’s Up with Tag Clouds?,” Visual Business Intelligence Newsletter, 2008. [Google Scholar]
  50. F. B. Viegas, M. Wattenberg, and J. Feinberg, “Participatory visualization with Wordle,” IEEE transactions on visualization and computer graphics, vol. 15, pp. 1137–1144, 2009. [CrossRef] [Google Scholar]
  51. R. Capra and G. Marchionini, “Faceted Browsing, Dynamic Interfaces, and Exploratory Search: Experiences and Challenges,” in Proceedings of the Workshop on Human-Computer Interaction and Information Retrieval (Cambridge, MA, 2007, pp. 7–9. [Google Scholar]
  52. F. B. Viegas, M. Wattenberg, and J. Feinberg, “Participatory visualization with wordle,” IEEE transactions on visualization and computer graphics, vol. 15, 2009. [CrossRef] [Google Scholar]
  53. E. R. Tufte, “Envisioning information,” Optometry & Vision Science, vol. 68, pp. 322–324, 1991. [CrossRef] [Google Scholar]
  54. E. R. Tufte and P. Graves-Morris, The visual display of quantitative information vol. 2: Graphics press Cheshire, CT, 1983. [Google Scholar]
  55. ManyEyes, “https://researcher.watson.ibm.com/researcher/view_group.php?id=7352,” https://researcher.watson.ibm.com/researcher/view_group.php?id=7352, 2018. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.