Open Access
Issue
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
Article Number 02014
Number of page(s) 7
Section Smart Manufacturing and Industrial 4.0
DOI https://doi.org/10.1051/matecconf/201925502014
Published online 16 January 2019
  1. NFPA, Standard on explosion prevention systems (2002) [Google Scholar]
  2. X. Yan, J. Yu, Powder Technol. Dust explosion venting of small vessels at the elevated static activation overpressure, 261, 250–256 (2014) [Google Scholar]
  3. J. Taveau, Process Saf. Prog, Secondary dust explosions: How to prevent them or mitigate their effects, 31, 36–50 (2012) [Google Scholar]
  4. M. Adnan, A. Ahmad, A. Ahmed, N. Khalid, I. Hayat, I. Ahmed, Pak. J. Bot. Chemical compositions and sensory evaluation of tea (Camellia Sinensis), 45, 901–907 (2013) [Google Scholar]
  5. C. Proust, A. Accorsi, L. Dupont, J. Loss Prevent Proc. Measuring the violence of dust explosions with the 20 L sphere and with the standard ISO 1 m3 vessel: systematic comparison and analysis of the discrepancies, 20, 599–606 (2007) [Google Scholar]
  6. O. Dufaud, M. Traore, L. Perrin, S. Chazelet, D. Thomas, J. Loss Prevent Proc. Experimental investigation and modelling of aluminium dust explosions in the 20 L sphere, 23, 226–236 (2010) [Google Scholar]
  7. R. Dobashi, Fire Saf. J. Studies on accidental gas and dust, 91, 21–27 (2017) [CrossRef] [Google Scholar]
  8. R. Eades, K. Perry, C. Johnson, J. Miller, Int. J. Min. Sci. Technol. Evaluation of the 20 L dust explosibility testing chamber and comparison to a modified 38 L vessel for underground coal, 28, 885–890 (2018) [Google Scholar]
  9. A. Benedetto, A. Garcia, P. Russo, Ind. Eng. Chem. Res. Combined effect of ignition energy and inertial turbulence on the explosion behaviour of lean gas/dust-air mixtures, 51, 772–779 (2012) [Google Scholar]
  10. J. Wade, G. Martin, D. Long, Powder Technol. A methodological approach for determining the effect of moisture content on the compaction properties of powders: granular hydroxyapatite, 246, 511–519 (2013) [Google Scholar]
  11. B. Du, J. Tan, W. Huang, N. Kuai, J. Yuan, Z. Li, Y. Gan, Effect of ignition energy on dust explosion behavior: Phenomena of under-driving and over- driving (2012) [Google Scholar]
  12. T. Abbasi, S. Abbasi, J. Hazard Mater. Dust explosions cases, causes, consequences and control, 140, 7–44 (2009) [Google Scholar]
  13. M. Todaka, W. Kowhakul, H. Masamoto, M. Shigematsu, J. Loss Prevent Proc. Thermal analysis and dust explosion characteristics of spent coffee grounds and jatropha, 44, 538–543 (2016) [Google Scholar]
  14. L. Cashdollar, J. Loss Prevent Proc. 13 (2000) [Google Scholar]
  15. A. Fumagalli, M. Derudi, R. Rota, S. Copelli, J. Loss Prevent Proc, 44, 311–322 (2016) [CrossRef] [Google Scholar]
  16. S. Bershad, 20 L sphere data - agricultural dusts (NFPA, 2014) [Google Scholar]
  17. S. Lemkowitz, A. Pekalski, H. Pasman, J. Zevenbergen, J. Phys. Iv. How the combination of chemistry and engineering determine dust and gas explosion behaviour: Educating science and engineering students and training industrial professionals in practical gas and dust explosion theory, 12, 197–198 (2002) [Google Scholar]
  18. M. Lemkowitz, H. Pasman, KONA Powder Part. J. A review of the fire and explosion hazards of particulates, 31, 53–81 (2014) [CrossRef] [Google Scholar]
  19. K. Lee, H. Kim, K. Chu, K. Ko, Sci. Technol. Energ. Ma. The generation characteristics of instant dusts at the time of structure demolition by explosion, 72, 26–35 (2011) [Google Scholar]
  20. E. Inoka, J. Sapko, L. Marcia, A. Isaac, S. Eric, J. Loss Prevent Proc. Design and development of a dust dispersion chamber to quantify the dispersibility of rock dust, 39, 7–16 (2016) [Google Scholar]
  21. M. Suhaimi, A. Saat, M. Wahid, M. Sies, J. Technol. Flame propagation and burning rates of methane-air mixtures using schlieren photography, 78, 21–27 (2016) [Google Scholar]
  22. A. Dahoe, J. Zevenbergen, S. Lemkowitz, B. Scarlett, J. Loss Prevent Proc. Dust explosions in spherical vessels: the role of flame thickness in the validity of the cube-root law, 9, 33–44 (1996) [Google Scholar]
  23. A. Ramirez, J. Garcia-Torrent, J. Aguado, J. Hazard Mater. Determination of parameters used to prevent ignition of stored materials and to protect against explosions in food industries, 168, 115–120 (2009) [Google Scholar]
  24. K. Eckhoff, Dust Explosions in the process industries, 385–430 (2003) [CrossRef] [Google Scholar]
  25. P. Amyotte, M. Lindsay, R. Domaratzki, N. Marchand, A. Di Benedetto, P. Russo, Process Saf. Prog. Prevention and mitigation of dust and hybrid mixture explosions, 29, 17–21 (2010) [Google Scholar]
  26. OSHA, Hazard alert: Combustible dust explosions (2008) [Google Scholar]
  27. A. Dastidar, P. Amyotte, J. Going, K. Chatrathi, Fuel, Inerting of coal dust explosions in laboratory and intermediate-scale chambers, 80, 1593–1602 (2001) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.