Open Access
Issue |
MATEC Web Conf.
Volume 255, 2019
Engineering Application of Artificial Intelligence Conference 2018 (EAAIC 2018)
|
|
---|---|---|
Article Number | 02008 | |
Number of page(s) | 7 | |
Section | Smart Manufacturing and Industrial 4.0 | |
DOI | https://doi.org/10.1051/matecconf/201925502008 | |
Published online | 16 January 2019 |
- E. Arroyo, A. Badel, F. Formosa, Y. Wu, and J. Qiu, “Comparison of electromagnetic and piezoelectric vibration energy harvesters: Model and experiments,” Sensors Actuators, A Phys., vol. 183, pp. 148–156, 2012. [CrossRef] [Google Scholar]
- S. S. Balpande, R. S. Pande, and R. M. Patrikar, “Design and low cost fabrication of green vibration energy harvester,” Sensors Actuators, A Phys., vol. 251, pp. 134–141, 2016. [CrossRef] [Google Scholar]
- K. H. Hui, M. H. Lim, M. S. Leong, and S. M. Al-Obaidi, “Dempster-Shafer evidence theory for multi- bearing faults diagnosis,” Eng. Appl. Artif. Intell., vol. 57, pp. 160–170, 2017. [CrossRef] [Google Scholar]
- F. K. Shaikh and S. Zeadally, “Energy harvesting in wireless sensor networks: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 55, pp. 1041–1054, 2016. [CrossRef] [Google Scholar]
- A. R. M. Siddique, S. Mahmud, and B. Van Heyst, “A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms,” Energy Convers. Manag., vol. 106, pp. 728–747, 2015. [CrossRef] [Google Scholar]
- S. P. Pellegrini, N. Tolou, M. Schenk, and J. L. Herder, “Bistable vibration energy harvesters: A review,” J. Intell. Mater. Syst. Struct., vol. 24, no. 11, pp. 1303–1312, 2012. [CrossRef] [Google Scholar]
- H. Li, G. Zhang, R. Ma, and Z. You, “Design and Experimental Evaluation on an Advanced Multisource Energy Harvesting System for Wireless Sensor Nodes,” vol. 2014, 2014. [Google Scholar]
- R. Garcia et al., “Piezoelectric energy harvesting: application to data center monitoring,” Sens. Rev., vol. 35, no. 4, pp. 401–408, 2015. [CrossRef] [Google Scholar]
- K. Yamamoto, T. Fujita, A. Badel, F. Formosa, K. Kanda, and K. Maenaka, “Energy Estimation for Electret Harvester with Nonlinear Spring,” Proceedings, vol. 1, no. 4, p. 585, 2017. [CrossRef] [Google Scholar]
- Y. Suzuki, “Recent progress in MEMS electret generator for energy harvesting,” IEEJ Trans. Electr. Electron. Eng., vol. 6, no. 2, pp. 101–111, 2011. [CrossRef] [Google Scholar]
- V. Bhatnagar and P. Owende, “Energy harvesting for assistive and mobile applications,” Energy Sci. Eng., p. n/a-n/a, 2015. [Google Scholar]
- S. Naifar, S. Bradai, C. Viehweger, and O. Kanoun, “Survey of electromagnetic and magnetoelectric vibration energy harvesters for low frequency excitation,” Meas. J. Int. Meas. Confed., 2015. [Google Scholar]
- C. Xu, C. Pan, Y. Liu, and Z. L. Wang, “Hybrid cells for simultaneously harvesting multi-type energies for self-powered micro/nanosystems,” Nano Energy, vol. 1, no. 2, pp. 259–272, 2012. [CrossRef] [Google Scholar]
- A. Kokkinopoulos, G. Vokas, and P. Papageorgas, “Energy harvesting implementing embedded piezoelectric generators-The potential for the Attiki Odos traffic grid,” Energy Procedia, vol. 50, pp. 1070–1085, 2014. [CrossRef] [Google Scholar]
- C. Wei and X. Jing, “A comprehensive review on vibration energy harvesting: Modelling and realization,” Renew. Sustain. Energy Rev., vol. 74, no. November 2016, pp. 1–18, 2017. [CrossRef] [Google Scholar]
- Q. Deng, M. Kammoun, A. Erturk, and P. Sharma, “Nanoscale flexoelectric energy harvesting,” Int. J. Solids Struct., vol. 51, no. 18, pp. 3218–3225, 2014. [CrossRef] [Google Scholar]
- S. Anton, K. Farinholt, and A. Erturk, “Piezoelectret foam-based vibration energy harvesting,” J. Intell. Mater. Syst. Struct., vol. 25, no. 14, pp. 1681–1692, 2014. [CrossRef] [Google Scholar]
- F. Li, Y. You, Y. Lu, and Y. Pan, “Human Centered Computing,” vol. 8944, no. 301, pp. 15–25, 2015. [Google Scholar]
- N. G. Elvin and A. A. Elvin, “An experimentally validated electromagnetic energy harvester,” J. Sound Vib., vol. 330, no. 10, pp. 2314–2324, 2011. [CrossRef] [Google Scholar]
- F. U. Khan and I. Ahmad, “Review of energy harvesters utilizing bridge vibrations,” Shock Vib., vol. 2016, 2016. [Google Scholar]
- S. Zhu, W. ai Shen, and Y. lin Xu, “Linear electromagnetic devices for vibration damping and energy harvesting: Modeling and testing,” Eng. Struct., vol. 34, pp. 198–212, 2012. [CrossRef] [Google Scholar]
- Z. L. Wang, “On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators,” Mater. Today, vol. 00, no. 00, pp. 1–9, 2017. [Google Scholar]
- Q. Zheng, B. Shi, Z. Li, and Z. L. Wang, “Recent Progress on Piezoelectric and Triboelectric Energy Harvesters in Biomedical Systems,” Adv. Sci., pp. 1–23, 2017. [Google Scholar]
- J. Davidson and C. Mo, “Recent Advances in Energy Harvesting Technologies for Structural Health Monitoring Applications,” Smart Mater. Res., vol. 2014, p. 14, 2014. [Google Scholar]
- Z.-W. Fang, Y.-W. Zhang, X. Li, H. Ding, and L.-Q. Chen, “Integration of a nonlinear energy sink and a giant magnetostrictive energy harvester,” J. Sound Vib., vol. 391, pp. 35–49, 2016. [CrossRef] [Google Scholar]
- A. Ghorbanpour Arani and Z. Khoddami Maraghi, “A feedback control system for vibration of magnetostrictive plate subjected to follower force using sinusoidal shear deformation theory,” Ain Shams Eng. J., vol. 7, no. 1, pp. 361–369, 2016. [CrossRef] [Google Scholar]
- D. Davino, P. Krejčí, A. Pimenov, D. Rachinskii, and C. Visone, “Analysis of an operator-differential model for magnetostrictive energy harvesting,” Commun. Nonlinear Sci. Numer. Simul., vol. 39, pp. 504–519, 2016. [CrossRef] [Google Scholar]
- H. Jafari, A. Ghodsi, S. Azizi, and M. R. Ghazavi, “Energy harvesting based on Magnetostriction, for low frequency excitations,” Energy, vol. 124, pp. 1–8, 2017. [CrossRef] [Google Scholar]
- B. Rezaeealam, “Finite element analysis of magnetostrictive vibration energy harvester,” COMPEL - Int. J. Comput. Math. Electr. Electron. Eng., vol. 31, no. 6, pp. 1757–1773, Nov. 2012. [CrossRef] [Google Scholar]
- M. Ibrahim and A. Salehian, “Modeling, fabrication, and experimental validation of hybrid piezo- magnetostrictive and piezomagnetic energy harvesting units,” J. Intell. Mater. Syst. Struct., vol. 26, no. 10, p. 1045389X14538540, 2014. [Google Scholar]
- F. Belhora, P. Cottinet, and D. Guyomar, “Hybridization of electrostrictive polymers and electrets for mechanical energy harvesting,” Sensors Actuators A …, vol. 183, pp. 50–56, 2012. [Google Scholar]
- L. Wang, M. Lallart, L. Petit, L. Lebrun, P.-J. Cottinet, and D. Guyomar, “Low-cost charge of electrostrictive polymers for efficient energy harvesting,” J. Intell. Mater. Syst. Struct., vol. 26, no. 16, pp. 2123–2136, 2014. [CrossRef] [Google Scholar]
- X. Jiang, W. Huang, and S. Zhang, “Flexoelectric nano-generator: Materials, structures and devices,” Nano Energy, vol. 2, no. 6, pp. 1079–1092, 2013. [CrossRef] [Google Scholar]
- B. Mahanty, S. K. Ghosh, S. Garain, and D. Mandal, “An effective flexible wireless energy harvester/sensor based on porous electret piezoelectric polymer,” Mater. Chem. Phys., vol. 186, pp. 327–332, 2017. [CrossRef] [Google Scholar]
- L. Vinet and A. Zhedanov, “A ‘missing’ family of classical orthogonal polynomials,” J. Polym. Sci. PART B Polym. Phys., vol. 50, no. 8, pp. 523–535, Nov. 2010. [Google Scholar]
- T. N. T. Mohamad, J. Sampe, and D. D. Berhanuddin, “Architecture of micro energy harvesting using hybrid input of RF, thermal and vibration for semi-active RFID tag,” Eng. J., vol. 21, no. 2, pp. 183–197, 2017. [CrossRef] [Google Scholar]
- K. V. Selvan and M. S. Mohamed Ali, “Micro-scale energy harvesting devices: Review of methodological performances in the last decade,” Renew. Sustain. Energy Rev., vol. 54, pp. 1035–1047, 2016. [CrossRef] [Google Scholar]
- Y. He, Z. You, and X. Wang, “Modelling of a hybrid energy system for autonomous application,” Int. J. Adv. Robot. Syst., vol. 10, pp. 1–6, 2013. [Google Scholar]
- A. S. M. Zahid Kausar, A. W. Reza, M. U. Saleh, and H. Ramiah, “Energizing wireless sensor networks by energy harvesting systems: Scopes, challenges and approaches,” Renew. Sustain. Energy Rev., vol. 38, pp. 973–989, 2014. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.