Open Access
Issue
MATEC Web Conf.
Volume 252, 2019
III International Conference of Computational Methods in Engineering Science (CMES’18)
Article Number 08003
Number of page(s) 6
Section Material Properties Structure Research Methods
DOI https://doi.org/10.1051/matecconf/201925208003
Published online 14 January 2019
  1. K. Slamecka, K., et al., International Journal of Fatigue, 32, 6, 921-928 (2010) [CrossRef] [Google Scholar]
  2. D. Rozumek et al., Key Engineering Materials, 592-593, 692-695 (2014) [CrossRef] [Google Scholar]
  3. A. Carpinteri, A. Spagnoli, S. Vantadori, Fatigue & Fracture Of Engineering Materials & Structures 25, 7, 619-627 (2002) [CrossRef] [Google Scholar]
  4. T. Kobayashi, D. A. Shockey, International Journal of Fatigue, 23, 1, 135-142 (2001) [CrossRef] [Google Scholar]
  5. W. Macek, T. Wołczański, ITM Web Conf., 15 06002 (2017) [CrossRef] [Google Scholar]
  6. K. Slámečka, P. Ponížil, J. Pokluda, Quantitative fractography in bending-torsion fatigue, Materials Science and Engineering: A, ISSN: 0921-5093, 462, 1, Page: 359-362, 2007 [CrossRef] [Google Scholar]
  7. M. Oravcováa, P. Palčeka, M. Chalupováa, Procedia Engineering, 192, 644–648 (2017) [CrossRef] [Google Scholar]
  8. G.M. Krolczyk, et al., Measurement, 2, 464-470 (2016) [CrossRef] [Google Scholar]
  9. A. Deptuła, P. Osiński, U. Radziwanowska, 41, 3, 449460. DOI: 10.1515/aoa-2016-0046 [Google Scholar]
  10. J. D. Wu, J. M. Kuo J.M, Expert Systems with Applications, 36, 4278-4286 (2009) [CrossRef] [Google Scholar]
  11. L. Xuo, F. F. Jelinek, Probabilistic classification of HMM states for large vocabulary, [in:] Proceedings of ICASSP, 2044–2047, Phoenix, USA, 1999 [Google Scholar]
  12. A. Deptuła, P. Osiński, D. Kunderman, D. Włostowski, U. Radziwanowska, Archives of Acoustics, 41, 2, 345-350 [CrossRef] [Google Scholar]
  13. M. Kirpluk, Fundamentals of acoustics (in Polish), Wyd. NTL-M, Warszawa, 2012. [Google Scholar]
  14. A. Deptuła, J. Drewniak, M.A. Partyka, Analysis of a planetary gear modelled with a contour graph considering the decision making complexity of game-tree structures, II International Conference of Computational Methods in Engineering Science (CMES’17), Exploitation And Machine Building, ITM Web Conf. 15, 04002 (2017) [Google Scholar]
  15. S. D. Lee, D. Cheung, Kao B, Is sampling useful in data mining a case in the maintenance of discovered association rulet, Data Mining and Knowledge Discovery, 2, 3, 233–262 (1998) [CrossRef] [Google Scholar]
  16. A. M. Law, W.D. Kelton, Simulation Modeling and Analysis, McGraw-Hill, Boston [Google Scholar]
  17. F. Basciftci, S. Kahramanli, Advances in Engineering Software, 42, 6, 316-321, (2011) [CrossRef] [Google Scholar]
  18. J. R. Quinlan, Rivest R.L., Information and Computation, 80, s. 227-248 (1989) [CrossRef] [Google Scholar]
  19. K. Gurney, An introduction to neural networks. UCL Press. ISBN 1857286731, 1997 [CrossRef] [Google Scholar]
  20. A. Głowacz, W. Głowacz, Z. Glowacz, J. Kozik, Measurement, 113 (2018) https://doi.org/10.1016/j.measurement.2017.08.036 [Google Scholar]
  21. D. Rozumek, S. Faszynka, Materials Science, 53, 3, (2017) [CrossRef] [Google Scholar]
  22. S. Faszynka, D. Rozumek, Solid State Phenomena, 250, 10-15 (2016) [CrossRef] [Google Scholar]
  23. W. T. Macek, T. Lagoda, N. Mucha, Fatigue & Fracture of Engineering Materials & Structures, 41, 2, 249-259 (2018) [CrossRef] [Google Scholar]
  24. W. Macek, E. Macha, Archive of Mechanical Engineering, 62, 1, 85-100 (2015) [CrossRef] [Google Scholar]
  25. R. Owsinski, A. Nieslony, Analytical Model of Dynamic Behaviour of Fatigue Test Stand-Description and Experimental Validation. in 13th Conference on Dynamical Systems Theory and Applications, Lodz, POLAND: Springer (2015) [Google Scholar]
  26. A. Ultsch, Self-organising neural networks for visualisation and classifi-cation, Information and Classification, Opitz O., Lausen B., Klar R., 864–867, Springer-Verlag, Berlin (1993) [Google Scholar]
  27. L. Xuo, F. Jelinek, Probabilistic classification of HMM states for large vocabulary, [in:] Proceedings of ICASSP, 2044–2047, Phoenix, USA. [Google Scholar]
  28. K. F. Thang, R.K. Aggrwal, D.G. Esp, A. McGrail Statistical and Neural Network Analysis of Dissolved in Power Transformer, IEEE Dielectric Materials, Measurements and Applications Conference (2000) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.