Open Access
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
Article Number 01028
Number of page(s) 6
Section Heat, Mass and Momentum Transfer
Published online 27 November 2018
  1. D. Mikielewicz, B. Jakubowska, Arch. Thermodyn., 35, 97–114 (2014) [CrossRef] [Google Scholar]
  2. D. Mikielewicz, B. Jakubowska, Arch. Thermodyn., 37, 89–106 (2016) [CrossRef] [Google Scholar]
  3. D. Mikielewicz, B. Jakubowska, Polish Marit. Res., 24, 141–148 (2017) [CrossRef] [Google Scholar]
  4. D. Del Col, S. Bortolini, D. Torresin, A. Cavallini, Procedings of 23rd IIR International Congress of Refrigeration, Prague, Czech Republic (2011) [Google Scholar]
  5. United Nations Environment Program (UNEP) Montreal Protocol on Substances that Deplete the Ozone Layer, Final Act. United Nations, New York, USA, (1997) [Google Scholar]
  6. M.P. Simmonds, W. J. Elliott, J. Mar. Biol. Assoc. UK, 89, 203–210 (2009) [CrossRef] [Google Scholar]
  7. M. Ghodbane, Int. Proceedings of the international congress and exposition, Detroit, USA (1999) [Google Scholar]
  8. G. Lorentzen, Revival of carbon dioxide as refrigerant, Int. J. Refrig., 17, 292–301 (1994) [Google Scholar]
  9. L. Cheng, G. Ribatski, J. R. Thome, Int. J. Heat Mass Transf. 51, 125–135 (2008) [CrossRef] [Google Scholar]
  10. S. Wongwiesess, N. Chimres, Energ. Convers. Manag., 46, 85–100 (2005) [CrossRef] [Google Scholar]
  11. J. Mikielewicz, Int. J. Heat Transf., 17, 1129–1134 (1973) [CrossRef] [Google Scholar]
  12. D. Mikielewicz, J. Mikielewicz, J. Tesmar, Int. J. Heat Mass Transf., 50, 3949–3956 (2007) [CrossRef] [Google Scholar]
  13. D. Mikielewicz, J. Mikielewicz, Heat Transf. Eng., 32, 1173–1181 (2011) [CrossRef] [Google Scholar]
  14. D. Mikielewicz, R. Andrzejczyk, B. Jakubowska, J. Mikielewicz, Heat Transf. Eng., 37, 1158–1171 (2016) [CrossRef] [Google Scholar]
  15. H. Müller-Steinhagen, K. Heck, Chem. Eng. Prcoess, 20, 197–308 (1986) [Google Scholar]
  16. D. Mikielewicz, Heat Transf. Eng., 31, 276–287 (2010) [CrossRef] [Google Scholar]
  17. L. Friedel, European Two-Phase Flow Group Meeting, Paper E2, Ispra, Italy (1979) [Google Scholar]
  18. T. N. Tran, M. C. Chyu, M. W. Wambsganss, Int. J. Refrig., 26, 1739–1754 (2000) [Google Scholar]
  19. P. A. Kew, K. Cornwell, Appl. Therm. Eng., 17, 705–715 (1997) [CrossRef] [Google Scholar]
  20. M. Docoulombier, S. Colasson, B. J. P. Haberschil, Exp. Therm. Fluid Sci., 35, 597 – 611 (2011) [CrossRef] [Google Scholar]
  21. A. S. Pamitran, K.-I. Choi, J.-T. Oh, Nasruddin, Int. Multiph. Flow, 37, 794–801 (2011) [CrossRef] [Google Scholar]
  22. R. Mastrullo, A. W. Mauro, A. Rosato, G. P. Vanoli, Int. J. Refrig., 33, 1068–1085 (2010) [CrossRef] [Google Scholar]
  23. S. H. Yoon, E. S. Cho, Y. W. Hwang, M. S. Kim, K. Min, Y. Kim, Int. J. Refrig, 27, 111–119 (2004) [CrossRef] [Google Scholar]
  24. K.-I. Choi, A. S. Pamitran, C.-Y. Oh, J.-T. Oh, Int. J. Refrig., 30, 1336–1346 (2007) [CrossRef] [Google Scholar]
  25. H.-K. Oh, C. H. Son, Appl. Therm. Eng., 31, 163–172 (2011) [CrossRef] [Google Scholar]
  26. C. Dang, N. Haraguchi, E. Hihara, Int. J. Refrig, 33, 655–663 (2010) [CrossRef] [Google Scholar]
  27. Y. J. Kim, J. M. Cho, M. Kim, Int. J. Refrig., 31, 771–779 (2008) [CrossRef] [Google Scholar]
  28. J. Wu, T. Koettig, C. Franke, D. Helmer, T. Eisel, F. Haug, J. Bremer, Int. J. Heat Mass Transf., 54, 2154–2162 (2011) [CrossRef] [Google Scholar]
  29. J. M. Cho, M. S. Kim, Int. J. Refrig., 30, 986–994 (2007) [CrossRef] [Google Scholar]
  30. X. Zhao, P. K. Bansal, Int. J. Refrig., 30, 937–945 (2007) [CrossRef] [Google Scholar]
  31. Z. Anwar, Flow boiling heat transfer, pressure drop and dryout characteristics of low GWP refrigerants in a vertical mini-channel, Stockholm, Sweden (2014) [Google Scholar]
  32. J. B. Copetti, M. H. Macaganan, F. Zinani, Int. J. Refrig., 33, 325–334 (2013) [CrossRef] [Google Scholar]
  33. C. C. Wang, C. S. Chiang, D. C. Lu, Exp Therm. Fluid Sci, 15, 395–405 (1997) [CrossRef] [Google Scholar]
  34. M.-C. Lu, J.-R. Tong, W.C-C, Int. J. Heat Mass Transf., 65, 545–551 (2013) [CrossRef] [Google Scholar]
  35. S. Satioh, C. Dang, Y. Nakamura, E. Hihara, Int. J. Refrig., 33, 1846–1853 (2011) [Google Scholar]
  36. A. Kundu, R. Kumar, A. Gupta, Exp. Therm. Fluid Sci., 57, 344–352 (2014) [CrossRef] [Google Scholar]
  37. Y. Xu, X. Fang, G. Li, D. Li, Int. J. Heat Mass Transf., 80, 597–606 (2015) [CrossRef] [Google Scholar]
  38. Y. Xu, X. Fang, G. Li, D. Li, Int. J. Heat Mass Transf., 92, 1143–1157 (2016) [CrossRef] [Google Scholar]
  39. S. Mancin, A. Diani, L. Rossetto, Energy Procedia, 45, 6098–615 (2014) [CrossRef] [Google Scholar]
  40. C. B. Tibirçá, G. Ribatski, Int. J. Heat Mass Transf., 53, 2459–2468 (2010) [CrossRef] [Google Scholar]
  41. W. Owhaib, Experimental Heat Transfer , Pressure Drop and Flow Visualization of R-134a in Vertical Mini/Micro Tubes, Stockholm, Sweden (2007) [Google Scholar]
  42. D. Shiferaw, T. G. Karayiannis, D. B. R. Kenning, Int. J Therm. Sci., 48, 331–341 (2009) [CrossRef] [Google Scholar]
  43. C. Martin-Callizo, R. Ali, B. Palm, Heat Transfer Conference Proceedings, Edinburgh, UK (2007) [Google Scholar]
  44. L. Consolini, J. R. Thome, Microfluid Nanofluid, 6, 731–746 (2009) [CrossRef] [Google Scholar]
  45. M. M. Mahmoud, D. B. R. Kenning, T. G. Karayiannis, 7th Int. Conference in Enhanced, Compact and Ultra-compact Heat Exchangers: From Microscale Phenomena to Industrial Applications, Heredia, Costa Rice (2009) [Google Scholar]
  46. C. I. Ong, J. R. Thome, Exp. Therm. Fluid Sci., 33, 651–663 (2009) [CrossRef] [Google Scholar]
  47. Z. Anwar, B. Palm, R. Khodabanden, Exp. Therm. Fluid Sci., 66, 137–149 ( 2015) [CrossRef] [Google Scholar]
  48. A. Diani, S. Mancin, L. Rossetto, Exp. Therm. Fluid Sci., 66, 127–136 (2015) [CrossRef] [Google Scholar]
  49. A. V Belyaev, A. N. Varava, A. V Dedov, A. T. Komov, Int. J. Heat Mass Transf., 110 360–373 (2017) [CrossRef] [Google Scholar]
  50. R. Andrzejczyk, T. Muszyński, App. Therm. Eng., 136, 237–251 (2018) [CrossRef] [Google Scholar]
  51. J. Wajs, D. Mikielewicz, B. Jakubowska, Energy, 157, 853–861 (2018) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.