Open Access
Issue
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
Article Number 01019
Number of page(s) 4
Section Heat, Mass and Momentum Transfer
DOI https://doi.org/10.1051/matecconf/201824001019
Published online 27 November 2018
  1. J.E Fesmire, S.D Augustynowicz, Cryogenic Thermal Insulation Systems, 16th Thermal and Fluids Analysis Workshop, Orlando, (2005) [Google Scholar]
  2. M. Chorowski, Cryogenics Fundamentals and Applications, IPPU Masta, Gdańsk (in Polish) (2005) [Google Scholar]
  3. A. Bahadori, Thermal Insulation Handbook for Oil, Gas and Petrochemical Industries, Elsevier (2014) [Google Scholar]
  4. U. Bünger, G. Owren, Development potentials for small mobile tanks with vacuum powder insulations, International Journal of Hydrogen Energy, pp. 259–279, a4 (1998) [Google Scholar]
  5. T.M. Flynn, Cryogenic engineering. Second Edition, Marcell Dekker, New York (2005) [Google Scholar]
  6. S.D Augustynowicz, J.E. Fesmire, J.P. Wikstrom, Cryogenic Insulation Systems, 20th International Congress of Refrigeration, Sydney (1999) [Google Scholar]
  7. J.E. Fesmire, Standardization in cryogenic insulation systems testing and performance data, Physics Procedia, pp. 1089–1097, 67 (2015) [CrossRef] [Google Scholar]
  8. A. Kogan, J.E. Fesmire W. Johanson, J. Minnick, Cryogenic Vacuum Insulation for Vessels and Piping, NASA Technical Report, Nr. KSC-2010–126 (2010) [Google Scholar]
  9. H. Reiss, A coupled numerical analysis of shield temperatures, heat losses and residual gas pressures in an evacuated super-insulation using thermal and fluid networks Part I: Stationary conditions., Cryogenics, pp. 259–279, 44 (2004). [CrossRef] [Google Scholar]
  10. G.F. Xie, X.D. Li, R.S. Wang, Study on the heat transfer of high-vacuum-multilayer-insulation tank after sudden, catastrophic loss of insulating vacuum, Cryogenics, pp. 682– 687, 50 (2010). [CrossRef] [Google Scholar]
  11. B. E. Coffman, J.E. Fesmire, S. White, G. Gould, S. Augustynowicz, Aerogel blanket insulation materials for cryogenic applications, Advances in Cryogenics Engineering AIP Conf. Proc., pp. 913-920, 1218 (2010) [Google Scholar]
  12. A. Hoseini, A. Melekian, M. Bahrami, Deformation and thermal resistance study of aerogel blanket insulation material under unaxial compression, Energy and Buildings, pp. 228-237, 130 (2016) [CrossRef] [Google Scholar]
  13. W. L. Johnson, J. A. Demko, J. E. Feasmire, Analysis and testing of multilayer and aerogel insulation configurations, Advances in Cryogenics Engineering AIP Conf. Proc., pp. 780-787, 1218 (2010). [CrossRef] [Google Scholar]
  14. W. Czyżycki, Modeling of heat flow through multilayer internal supports of cryogenic vessels, Technical Transactions, Mechanics, pp.27–34, 2-M (2015) [Google Scholar]
  15. N.B. Vargaftik., L.P. Filippov, A.A. Tarzimanov, Totskii E.E., Handbook of thermal conductivity of liquids and gases, CRC Press. (2005) [Google Scholar]
  16. W. Czyżycki, Heat flow modelling on thermal insulation of cryogenics tanks using SolidWorks Simulation package, Technical Transactions, Mechanics, pp.29–36, 4-M (2011) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.