Open Access
MATEC Web Conf.
Volume 240, 2018
XI International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2018)
Article Number 01002
Number of page(s) 6
Section Heat, Mass and Momentum Transfer
Published online 27 November 2018
  1. Kimura, M., et al., Long-Range Ordering of Diblock Copolymers Induced by Droplet Pinning, Langmuir, 19(23), pp. 9910–9913 (2003) [CrossRef] [Google Scholar]
  2. Park, J. and J. Moon, Control of Colloidal Particle Deposit Patterns within Picoliter Droplets Ejected by Ink-Jet Printing, Langmuir, 22(8), pp. 3506–3513(2006) [CrossRef] [Google Scholar]
  3. Vehring, R., Pharmaceutical Particle Engineering via Spray Drying, Pharmaceut. Res., 25(5), pp. 999–1022 (2008) [CrossRef] [PubMed] [Google Scholar]
  4. Fischer, B.J., Particle Convection in an Evaporating Colloidal Droplet, Langmuir, 18(1), pp. 60–67 (2002) [Google Scholar]
  5. Deegan, R.D., et al., Capillary flow as the cause of ring stains from dried liquid drops, Nature, 389(6653), pp. 827–829 (1997) [CrossRef] [Google Scholar]
  6. Hu, H. and R.G. Larson, Marangoni Effect Reverses Coffee-Ring Depositions, J. Phys. Chem. B, 110(14), pp. 7090–7094 (2006) [CrossRef] [PubMed] [Google Scholar]
  7. Kang, K.H., et al., Evaporation-induced saline Rayleigh convection inside a colloidal droplet, Phys. Fluids, 25(4), pp. 042001 (2013) [CrossRef] [Google Scholar]
  8. Savino, R. and R. Monti, Buoyancy and surface-tension-driven convection in hanging-drop protein crystallizer, J. Cryst. Growth, 165(3), pp. 308–318 (1996) [CrossRef] [Google Scholar]
  9. Lee, S.J., J. Hong, and Y.-S. Choi, Evaporation-Induced Flows inside a Confined Droplet of Diluted Saline Solution, Langmuir, 30(26), pp. 7710–7715 (2014) [Google Scholar]
  10. Pradhan, T.K. and P.K. Panigrahi, Influence of an adjacent droplet on fluid convection inside an evaporating droplet of binary mixture, Colloid. Surface. A, 500, pp. 154–165 (2016) [CrossRef] [Google Scholar]
  11. Pradhan, T.K. and P.K. Panigrahi, Evaporation induced natural convection inside a droplet of aqueous solution placed on a superhydrophobic surface, Colloid. Surface. A, 530, pp. 1–12 (2017) [CrossRef] [Google Scholar]
  12. Xu, G., et al., Effect of Salt Concentration on the Motion of Particles near the Substrate in Drying Sessile Colloidal Droplets, Langmuir, 33(3), pp. 685–695 (2017) [Google Scholar]
  13. Pradhan, T.K. and P.K. Panigrahi, Deposition pattern of interacting droplets, Colloid. Surface. A, 482, pp. 562–567 (2015) [CrossRef] [Google Scholar]
  14. Davoust, L. and J. Theisen, Evaporation Rate of Drop Arrays within a Digital Microsystem, Procedia Engineering, 47, pp. 1–4 (2012) [CrossRef] [Google Scholar]
  15. Davoust, L. and J. Theisen, Evaporation rate of drop arrays within a digital microfluidic system, Sensor. Actuat. B-Chem., 189, pp. 157–164 (2013) [CrossRef] [Google Scholar]
  16. Kelly-Zion, P.L., et al., Evaporation of sessile drops under combined diffusion and natural convection, Colloid. Surface. A, 381(1–3), pp. 31–36 (2011) [CrossRef] [Google Scholar]
  17. Ait Saada, M., S. Chikh, and L. Tadrist, Numerical investigation of heat and mass transfer of an evaporating sessile drop on a horizontal surface, Phys. Fluids, 22(11): Art. No. 112115 (2010) [CrossRef] [Google Scholar]
  18. Misyura, S.Y., Free convection and vapor diffusion of droplet aqueous solutions, Chem. Eng. Res. Des., 126(Supplement C), pp. 153–160 (2017) [CrossRef] [Google Scholar]
  19. Misyura, S.Y., Evaporation of a sessile water drop and a drop of aqueous salt solution, Sci. Rep., 7(1), pp. 14759 (2017) [CrossRef] [PubMed] [Google Scholar]
  20. Raghuram, S., et al., Numerical study of Marangoni convection during transient evaporation of two-component droplet under forced convective environment, Int. J. Heat Mass Tran., 55(25–26), pp. 7949–7957 (2012) [CrossRef] [Google Scholar]
  21. Doursat, C., et al., Droplet evaporation on a solid surface exposed to forced convection: Experiments, simulation and dimensional analysis, Int. J. Heat Mass Tran., 113, pp. 1234–1245 (2017) [CrossRef] [Google Scholar]
  22. Chakraborty, S., M.A. Rosen, and B.D. MacDonald, Analysis and feasibility of an evaporative cooling system with diffusion-based sessile droplet evaporation for cooling microprocessors, Appl. Therm. Eng., 125, pp. 104–110 (2017) [CrossRef] [Google Scholar]
  23. Fan, J., M.C.T. Wilson, and N. Kapur, Displacement of liquid droplets on a surface by a shearing air flow, J. Colloid Interf. Sci., 356(1), pp. 286–292 (2011) [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.