Open Access
Issue |
MATEC Web Conf.
Volume 238, 2018
International Conference on Novel Functional Materials (ICNFM2018)
|
|
---|---|---|
Article Number | 04003 | |
Number of page(s) | 5 | |
Section | Biological Material and Process | |
DOI | https://doi.org/10.1051/matecconf/201823804003 | |
Published online | 26 November 2018 |
- O. Shimomura, F. H. Johnson, and Y. Saiga, “Extraction, purification, and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea,” J. Cell. Comp. Physiol, vol. 59, pp. 223-239 (1962) [CrossRef] [PubMed] [Google Scholar]
- D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. J. Cormier, “Primary structure of the Aequorea victoria green-fluorescent protein,” Gene, vol. 111, pp. 229-233 (1992) [CrossRef] [PubMed] [Google Scholar]
- J. C. March, G. Rao, and W. E. Bentley, “Biotechnological applications of green fluorescent protein,” Appl Microbiol Biotechnol, vol. 62, pp. 303-315 (2003) [CrossRef] [Google Scholar]
- A. Miyawaki and R Y. Tsien, “Monitoring protein conformations and interactions by fluorescence resonance energy transfer between mutants of green fluorescent protein,” Methods Enzymol, vol. 327, pp. 472-500 (2000) [CrossRef] [Google Scholar]
- Y. Wu, Y. Zhou, J. Song, X. Hu, Y. Ding, and Z. Zhang, “Using Green and Red Fluorescent Proteins to Teach Protein Expression, Purification, and Crystallization,” Biochemistry and molecular biology education, vol. 36, pp. 43-54 (2008) [CrossRef] [Google Scholar]
- J. Morschhauser, S. Michel, J. Hacker, “Expression of a chromosomally integrated, single copy GFP gene in Candida albicans, and its use as a reporter of gene regulation,” Mol Gen Genet, vol. 257, pp. 412-420, February (1998) [CrossRef] [Google Scholar]
- M. Chalfie, M, Y. Tu, G. Euskirchen, W. W. Ward, D.C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science, vol. 263, pp. 802-805 (1994) [CrossRef] [PubMed] [Google Scholar]
- N. H. Tolia and L. Joshua-Tor, “Strategies for protein coxpression in Escherichia coli,” Nature methods, vol. 3, pp. 55-64 (2006) [CrossRef] [Google Scholar]
- G. L. Rosano and E. A. Ceccarelli, “Recombinant protein expression in Escherichia coli, advances and challenges,” Frontiers in microbiology, vol. 5, pp. 1-17 (2014) [Google Scholar]
- G. Hannig and S. C. Makrides, “Strategies for optimizing heterologous protein expression in Escherichia coli,” Trends in Biotech, vol. 16, pp. 54-60 (1998) [CrossRef] [Google Scholar]
- F. Baneyx, “Recombinant protein expression in Escherichia coli ,” Curr Opin Biotechnol , vol. 10, pp. 411-421 (1999) [CrossRef] [Google Scholar]
- A. K. Panda, “Bioprocessing of therapeutic proteins from the inclusion bodies of Escherichia coli,” Adv Biochem Eng Biotechnol, vol. 85, pp. 43-93 (2003) [Google Scholar]
- L. A. Palomares, S. Estrada-Mondaca, and O. T. Ramirez, “Production of recombinant proteins, challenges and solutions,” Methods Mol Biol ch.2, pp. 15-52 (2004) [Google Scholar]
- F. J. Mergulhao, D. K. Summers, and G. A. Monteiro, “Recombinant protein secretion in Escherichia coli,” Biotechnol Adv, vol. 23, no. 3, pp. 177-202 (2005) [CrossRef] [Google Scholar]
- J. Yin, G. Li, X. Ren, and G. Herrler, “Select what you need: A comparative evaluation of the advantages and limitations of frequently used expression systems for foreign genes, ” J Bacteriol , vol. 127, pp. 335-347 (2007) [Google Scholar]
- RA. Jefferson , TA. Kavanagh, MW. Bevan, “GUS fusions: glucuronidase as a sensitive and versatile gene fusion marker in higher plants,” EMBO J, vol. 6, pp. 3901-3907 (1987) [CrossRef] [Google Scholar]
- RA. Jefferson, “Assaying chimeric genes in plants: the GUS gene fusion system,” Plant Mol Biol Rep, vol. 5, pp. 387-405 (1987) [CrossRef] [Google Scholar]
- G. Kudla, A. W. Murray, D. Tollervey, and J. B. Plotkin, “CodingSequence Determinants of Gene Expression in Escherichia coli,” Science, vol. 324, pp. 255-257 (2009) [CrossRef] [Google Scholar]
- B. P. Cormack, R. Valdivia, and S. Falkow, “FACS-optimized mutants of the green fluorescent protein (GFP),” Gene, vol. 173, pp. 371-374 (1996) [CrossRef] [Google Scholar]
- C. Nolte, M. Matyash, T. Pivneva, C. G. Schipke, C. Ohlemeyer, U. K. Hanisch, F. Kirchhoff, and H. Kettenmann, “GFAP promoter controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue,” Glia, vol. 33, pp. 72-86 (2001) [CrossRef] [Google Scholar]
- H. J. Cha, M. Q. Pham, G. Rao, and W. E. Bentley, “Expression of Green Fluorescent Protein in Insect Larvae and Its Application for Heterologous Protein Production,” Biotechnology and bioengineering, vol. 56, pp. 239-247 (1997) [CrossRef] [Google Scholar]
- R. Heim, A. B. Cubitt, and R. Y. Tsien, “Improved green fluorescence,” Nature, vol. 373, pp. 663-664 (1995) [CrossRef] [Google Scholar]
- A. Fluitt, E. Pienaar, H. Viljoen, “Ribosome kinetics and aa-tRNA competition determine rate and fidelity of peptide synthesis,” Comput Biol Chem, vol. 31, pp. 335-346 (2007) [CrossRef] [Google Scholar]
- JF. Curran , M. Yarus, “Rates of aminoacyl-tRNA selection at 29 sense codons in vivo,” J Mol Biol, vol. 209, pp. 65-77 (1989) [CrossRef] [Google Scholar]
- FJM. Mergulhao, DK. Summers, GA. Monteiro, “Recombinant protein secretion in Escherichia coli,” Biotechnol Adv, vol. 23, pp. 177-202 (2005) [CrossRef] [Google Scholar]
- M. Kozak, “Point mutations close to the aug initiator codon affect the efficiency of translation of rat preproinsulin in vivo,” Nature, vol. 308 (5956), pp. 241-246 (1984) [CrossRef] [Google Scholar]
- DR. Cavener, “Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates,” Nucleic Acids Res, vol. 15(4), pp. 1353-1361 (1987) [CrossRef] [Google Scholar]
- DR. Cavener , SC. Ray, “Eukaryotic start and stop translation sites,” Nucleic Acids Res, vol. 19(12), pp. 3185-3192 (1991) [CrossRef] [Google Scholar]
- A. Ranjan, SE. Hasnain, “Influence of codon usage and translation initiation codon context in theAcNPV-based expression system: computer analysis using homologous and heterologous genes,” Virus Genes, vol.9(2), pp. 149-153 (1991) [CrossRef] [Google Scholar]
- T. Sugio, H. Matsuura, T. Matsui, M. Matsunaga M, “Effect of the sequence context of the AUG initiation codon on the rate of translation in dicotyledonous and monocotyledonous plant cells,” J Biosci Bioeng, vol.109(2), pp. 70-173 (2010) [CrossRef] [Google Scholar]
- S. Agarwal, S. Jha, I. Sanyal, DV. Amla, “Effect of point mutations in translation initiation context on the expression of recombinant human a1-proteinase inhibitor in transgenic tomato plants,” Plant Cell Rep, vol.28(12), pp. 1791-1798 (2009) [CrossRef] [Google Scholar]
- L. Cherbas, P. Cherbas, “The arthropod initiator: the capsite consensus plays an important role in transcription,” Insect Biochem Mol Biol, vol.23, pp. 81-90 (1993) [CrossRef] [PubMed] [Google Scholar]
- C. Finger, M. Gamer, S. KlunkelfuB, B. Bunk, R. Biedendieck, “Impact of rare codons and the functional coproduction of ratelimiting tRNAs on recombinant protein production in Bacillus megaterium,” Appl Microbiol Biotechnol, vol. 99, pp. 8999-9010 (2015) [CrossRef] [Google Scholar]
- X. L. Hao, S. Inoue, and M. Ishikawa, “Influence of insertion of the last sense codon on expression efficiency of green fluorescent protein gene in Escherichia coli,” Journal of Materials Science and Chemical Engineering, vol.3, pp.13-18 (2015) [CrossRef] [Google Scholar]
- J. Hammon, D. V. Palanivelu, J. Chen, C. Patel, and D. L. Minor, “A green fluorescent protein screen for identification of wellexpressed membrane proteins from a cohort of extremophilic organisms,” Protein Sci, vol. 18, no. 1, pp. 121-133 (2009) [Google Scholar]
- G. S. Waldo, B. M. Standish, J. Berendzen, and T. C. Terwilliger, “Rapid protein-folding assay using green fluorescent protein,” Nat Biotechnol, vol. 17, pp. 691-695 (1999) [CrossRef] [Google Scholar]
- K. R. Siemering, R. Golbik, R. Sever, and J. Haseloff, “Mutations that suppress the thermosensitivity of green fluorescent protein,” Current Biology, vol. 6, pp. 1653-1663 (1996) [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.