Open Access
Issue
MATEC Web Conf.
Volume 237, 2018
2018 3rd International Conference on Design, Mechanical and Material Engineering (D2ME 2018)
Article Number 02006
Number of page(s) 7
Section Chapter 2: Material Engineering
DOI https://doi.org/10.1051/matecconf/201823702006
Published online 26 November 2018
  1. Patent US 5121329 A: Apparatus and method for creating three-dimensional objects; 9 Cze 1992 [Google Scholar]
  2. Fuda Ning, Weilong Cong, Jingjing Qiu, Junhua Wei, Shiren Wang: Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling; Composites Part B: Engineering;Volume 80, 2015, Pages369–378 [Google Scholar]
  3. Nannan GuoMing C. Leu: Additive manufacturing: technology, applications and research needs; Frontiers of Mechanical Engineering; 2013, Volume 8, Issue 3, pp 215–243 [CrossRef] [Google Scholar]
  4. Kumar S. & Kruth J.-P. Composites by rapid prototyping technology. Materials & Design 31, 850–856 (2010). [CrossRef] [Google Scholar]
  5. Dudek P.: FDM 3D printing technology in manufacturing composite elements. Archives of Metallurgy and Materials, 58(2013),nr.4,1415–1418 [CrossRef] [Google Scholar]
  6. David Bak, “Rapid prototyping or rapid production? 3D printing processes move industry towards the latter”, Assembly Automation, 2003, Vol. 23 Issue: 4, pp.340–345 [CrossRef] [Google Scholar]
  7. Sung-Hoon AhnEmail authorKyung-Tae LeeHyung-Jung KimRenzhe WuJi-Soo KimSung-Hyuk Song Smart soft composite: An integrated 3D soft morphing structure using bend-twist coupling of anisotropic materials International Journal of Precision Engineering and Manufacturing; 2012, Volume 13, Issue 4, pp 631–634 [CrossRef] [Google Scholar]
  8. Bakarich S. E., Gorkin R. 3rd, in het Panhuis M. & Spinks G. M. Three-dimensional printing fiber reinforced hydrogel composites. ACS applied materials & interfaces 6, 15998–16006 (2014). [PubMed] [CrossRef] [Google Scholar]
  9. Suwanprateeb J., Sanngam R., Suvannapruk W. & Panyathanmaporn T. Mechanical and in vitro performance of apatite-wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3D-printing. J Mater Sci Mater Med 20, 1281–1289 (2009). [PubMed] [CrossRef] [Google Scholar]
  10. Chybowski L., Gawdzińska K., On the Possibilities of Applying the AHP Method to a Multi-criteria Component Importance Analysis of Complex Technical Objects. Advances in Intelligent Systems and Computing, Volume 445, Springer International Publishing 2016, pp. 701–710 [ISSN 2194-5357, ISBN 978-3-31306-1, online ISBN 978-3-319-31307-8, DOI 10.1007/978-3-319-31307-8_71] [CrossRef] [Google Scholar]
  11. Dimas L. S. & Buehler M. J. Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter 10, 4436–4442 (2014). [PubMed] [CrossRef] [Google Scholar]
  12. Compton B. G. & Lewis J. A. 3D-printing of lightweight cellular composites. Adv Mater 26, 5930–5935 (2014). [PubMed] [CrossRef] [Google Scholar]
  13. Leigh S. J., Bradley R. J., Purssell C. P., Billson D. R. & Hutchins D. A. A simple, low-cost conductive composite material for 3D printing of electronic sensors. PLoS One 7, e49365 (2012). [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  14. Tekinalp H. L. et al. Highly oriented carbon fiber–polymer composites via additive manufacturing. Compos Sci Technol 105, 144–150 (2014). [Google Scholar]
  15. Gray R. W. IV, Baird D. G. & Bohn J. H. Thermoplastic composites reinforced with long fiber thermotropic liquid crystalline polymers for fused deposition modeling. Polym Compos 19, 383–394 (1998). [CrossRef] [Google Scholar]
  16. Shofner M. L., Lozano K., Rodriguez-Macias F. J. & Barrera E. V. Nanofiber-reinforced polymers prepared by fused deposition modeling. Journal of Applied Polymer Science 89, 3081–3090 (2003). [CrossRef] [Google Scholar]
  17. Pidcock G. C. & in het Panhuis M. Extrusion Printing of Flexible Electrically Conducting Carbon Nanotube Networks. Advanced Functional Materials 22, 4790–4800 (2012). [CrossRef] [Google Scholar]
  18. Zhong W., Li F., Zhang Z., Song L. & Li Z. Short fiber reinforced composites for fused deposition modeling. Materials Science and Engineering A 301, 125–130 (2001). [CrossRef] [Google Scholar]
  19. Scheithauer U., Bergner A., Schwarzer E., Richter H.-J. & Moritz T. Studies on thermoplastic 3D printing of steel–zirconia composites. Journal of Materials Research 29, 1931–1940 (2014). [CrossRef] [Google Scholar]
  20. Hsueh C.-H. Young’s modulus of unidirectional discontinous-fibre composites. Compos Sci Technol 60, 2671–2680 (2000). [CrossRef] [Google Scholar]
  21. Hine P. J., Lusti H. R. & Gusev A. A. Numerical simulation of the effects of volume fraction, aspect ratio and fibre length distribution on the elastic and thermoelastic properties of short fibre composites. Compos Sci Technol 62, 1445–1453 (2002). [CrossRef] [Google Scholar]
  22. Love L. J. et al. The importance of carbon fiber to polymer additive manufacturing. Journal of Materials Research 29, 1893–1898 (2014). [CrossRef] [Google Scholar]
  23. Ryosuke Matsuzaki, Masahito Ueda, Masaki Namiki, Tae-Kun Jeong, Hirosuke Asahara, Keisuke Horiguchi, Taishi Nakamura, Akira Todoroki, and Yoshiyasu Hirano: Three-dimensionalprinting of continuous-fiber composites by in-nozzle impregnation; Sci Rep. 2016; 6: 23058. [CrossRef] [Google Scholar]
  24. Frank Van Der Klift, Yoichiro Koga, Akira Todoroki, Masahito Ueda, Yoshiyasu Hirano, Ryosuke Matsuzaki:3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens; Open Journal of Composite Materials, 2016, 6, 18–27 [CrossRef] [Google Scholar]
  25. K. Bryll, K. Gawdzińska, M. Nabiałek, P. Pawłowska; The effect of degradation in aqueous media on viscosity average molecular weight of single polymer polyester composites; Revista de Chimie 2017; 68(9): 2034–2038. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.