Open Access
MATEC Web Conf.
Volume 234, 2018
BulTrans-2018 – 10th International Scientific Conference on Aeronautics, Automotive and Railway Engineering and Technologies
Article Number 01001
Number of page(s) 5
Section Aeronautics
Published online 21 November 2018
  1. K. Kailasanath, Review of propulsion applications of detonation waves, AIAA Journal, 39(9), 1698-1708 (2000). [CrossRef] [Google Scholar]
  2. T. Bussing, G. Pappas, Introduction to pulse detonation engines, 32nd Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings Reno, NV, U.S.A., AIAA Journal 94-0263 (1994). [Google Scholar]
  3., accessed at 20.06.2018 [Google Scholar]
  4. J. Nicholls, H. Wilkinson, R. Morrison, Intermittent detonation as a thrust-producing mechanism, Jet Propulsion, 27, 534 (1957). [CrossRef] [Google Scholar]
  5. C. Goldenstein, I. Schultz, R. Spearrin, J. Jeffries, R. Hanson, Diode laser measurements of temperature and H2O for monitoring pulse detonation combustor performance, Stanford University, 24th ICDERS Taiwan, (2013) [Google Scholar]
  6. D. Valli, T. Jindal, Pulse detonation engine: parameters affecting performance, International Journal of Innovative Research in Science, Engineering and Technology, 3 (4), (2014) [Google Scholar]
  7. C. MyersIV, Initiation mechanisms of low-loss swept-ramp obstacles for deflagration to detonation transition in pulse detonation combustors, N0001409WR20022, Office of Naval Research (ONR) Code 33 Ballstone Tower One 800 N. Quincy St Arlington, VA 22203-1995 (2009) [Google Scholar]
  8. R. Friedman, American Rocket Society, 24, 349, (November 1953). [CrossRef] [Google Scholar]
  9. W. Dvorak, Performance characterization of swept ramp obstacle fields in pulse detonation applications, M.S. Thesis, Naval Postgraduate School, Monterey, CA, (2010). [Google Scholar]
  10. S. Lee, J. Watts, S. Saretto, S. Pal, C. Conrad, R Woodward, R. Santoro, Deflagration to detonation transition processes by turbulence-generating obstacles in pulse detonation engines, J. Propul. Power, 20, 1026 (2004). [CrossRef] [Google Scholar]
  11. S. Bhavesh, S. Linsu, Design and development of pulse detonation rocket engine with predetonator, International Journal of Basic and Applied Science Research (IJBASR), 1 (1), 1-6 (2014) [Google Scholar]
  12. P. Debnath, K. Pandey, Numerical investigation of detonation combustion wave in pulse detonation combustor with ejector, Journal of Applied Fluid Mechanics, 10 (2), 725-733, (2017) DOI:10.18869/acadpub.jafm.73.239.27266. [CrossRef] [Google Scholar]
  13. E. Wintenberger, J. Austin, M. Cooper, S. Jackson, J. Shepherd, An analytical model for the impulse of a single cycle pulse detonation engine, AIAA 2001-3811, (2001). [Google Scholar]
  14. V. Prisacariu, I. Cîrciu, Considerations regarding the performance of combustion chambers for turbo-jet engines, Review of the Air Force Academy, 2 (32), 53-60 (2016), DOI: 10.19062/1842-9238.2016.14.2.7. [CrossRef] [Google Scholar]
  15. S. Farokhi, Aircraft propulsion, second edition, (Wiley and sons, 2014). [Google Scholar]
  16. M. Marini, Analysis of hypersonic compression ramp laminar flows under sharp leading edge conditions. Aerospace science and technology, 5 (4), 257–271 (2001) [Google Scholar]
  17. F. Lu, D. Wilson, Some perspectives on pulse detonation propulsion systems. In: Z. Jiang (eds) Shock Waves. Springer, Berlin, Heidelberg, (2005), DOI [Google Scholar]
  18. ANSYS Fluent Tutorial Guide, Ansys 17, 2015, 724-746-3304, available at [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.