Open Access
MATEC Web Conf.
Volume 233, 2018
8th EASN-CEAS International Workshop on Manufacturing for Growth & Innovation
Article Number 00020
Number of page(s) 8
Published online 21 November 2018
  1. Haupt, M.; Niesner, R.; Unger, R.; Horst, P. Computational Aero-Structural Coupling for Hypersonic Applications. Proceedings of the 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, San Francisco, United States, 2006. [Google Scholar]
  2. Fernández, M.; Mullaert, J. Convergence and Error Analysis for a Class of Splitting Schemes in Incompressible Fluid-Structure Interaction. IMA Journal of Numerical Analysis 2015, Volume 36, Issue 4, Pages 1748-1782, DOI: 10.1093/imanum/drv055. [CrossRef] [Google Scholar]
  3. Iafrati, A.; Grizzi, S.; Siemann, M.; Benítez Montañés, L. High-Speed Ditching of a Flat Plate: Experimental Data and Uncertainty Assessment. Journal of Fluids and Structures 2015, Volume 55, Pages 501-525, DOI: 10.1016/j.jfluidstructs.2015.03.019. [CrossRef] [Google Scholar]
  4. Reinhard, M.; Korobkin, A.; Cooker, M. Water Entry of a Flat Elastic Plate at High Horizontal Speed. Journal of Fluid Mechanics 2013, Volume 724, Pages 123-153, DOI: 10.1017/jfm.2013.155. [CrossRef] [Google Scholar]
  5. Niesner, R.; Dannemann, F.; Haupt, M.; Horst, P.; Schreiber, A. An MpCCI-based Software Integration Environment for Hypersonic Fluid-Structure Problems. Proceedings of the 7th MpCCI User Forum, Sankt Augustin, Germany, 2006. [Google Scholar]
  6. Causin, P.; Gerbeau, J.; Nobile, F. Added-Mass Effect in the Design of Partitioned Algorithms for Fluid--Structure Problems. Computer methods in applied mechanics and engineering 2005, Volume 194, Issue 42-44, Pages 4506-4527, DOI: 10.1016/j.cma.2004.12.005. [CrossRef] [MathSciNet] [Google Scholar]
  7. Greenhow, M.; WM, L. Nonlinear-Free Surface Effects: Experiments and Theory. 1983, Cambridge: Massachusetts Institute of Technology, Department of Ocean Engineering. [Google Scholar]
  8. Arai, M.; Miyauchi, T. Numerical Simulation of the Water Impact on Cylindrical Shells Considering Fluid-Structure Interaction. Journal of the Society of Naval Architects of Japan 1997, Volume 1997, Issue 182, Pages 827-835. [CrossRef] [Google Scholar]
  9. Ionina, M.; Korobkin, A. Water Impact on Cylindrical Shell. Proceedings of the 14th Int. Workshop on Water Waves and Floating Bodies, Michigan, United States, 1999. [Google Scholar]
  10. Waimer, M.; Kohlgrüber, D.; Hachenberg, D.; Voggenreiter, H. The Kinematics Model - A Numerical Method for Development of a Crashworthy Composite Fuselage Design of Transport Aircraft. Proceedings of the 6th Triennial International Aircraft Fire and Cabin Safety Research Conference, Atlantic City, United States, 2010. [Google Scholar]
  11. Burman, E.; Fernández, M. Explicit Strategies for Incompressible Fluid-Structure Interaction Problems: Nitsche Type Mortaring Versus Robin--Robin Coupling. International Journal for Numerical Methods in Engineering 2014, Volume 97, Issue 10, Pages 739-758, DOI: 10.1002/nme.4607. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.