Open Access
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 04087
Number of page(s) 4
Section Circuit Simulation, Electric Modules and Displacement Sensor
Published online 19 November 2018
  1. Sun H W, Fang JC, Li Y. Application of ellipse fitting method to calibration of magnetic compass deviation. Chinese Journal of Scientific Instrument, 2009, 17(12): 3035-3039. [Google Scholar]
  2. Ke X Z, Liu N. Research on adaptive anti-jamming and null widening algorithm for satellite navigation. Journal of electronic measurement and instrument, 2010, 24(12): 1082-1086. [Google Scholar]
  3. Zhang J Y, Li S Hao Y P. High-speed spinningprojectile attitude algorithm based on magnetoresistive sensor. Foreign Electronic Measurement Technology, 2012, 31(1): 27-29. [Google Scholar]
  4. J. Hudak, J. Blazek, F. Kmec, et al. Multi-position static test of the magnetometer from IMU. J. Electr. Eng. 2010, 61 (7/s): 24-27. [Google Scholar]
  5. J. Fang, H. Sun, J. Cao, et al. A novel calibration method of magnetic compass based on ellipsoid fitting. IEEE Trans. Instrum. Meas. 2011, 60 (6): 2053-2061. [CrossRef] [Google Scholar]
  6. D. Gebre-Egziabher, G.H. Elkaim, J.D. Powelll, et al. A nonlinear, two-step estimation algorithm, for calibrating solid-state strapdown magnetometers. Proc. 8th Int. Conference on Navig. Systems, St. Petersburg, Russia, 2011: 200-299. [Google Scholar]
  7. M. Kok, J.D. Hol, T.B. Schon, F. Gustafsson, H. LUINGE. Calibration of a magnetometer in combination with inertial sensors. 15th Int. Conference on Inf. Fusion, 2012: 787-793. [Google Scholar]
  8. S.A. Hoseini Tabatabaei, A. Gluhak, R. Tafazoli. A fast calibration method for triaxial magnetometers. IEEE Trans. Instrum. Meas. 2013, 62(11): 2929-2937. [CrossRef] [Google Scholar]
  9. Vasconcelos J F, Elkaim G, Silvestre C, et al. A geometric approach to strapdown magnetometer calibration in sensor frame. Navigation, Guidance and Control of Underwater Vehicles, 2008, 2(1): 1-11. [Google Scholar]
  10. Long LI, Zhang HE Tang YU-FA, et al. Application of Adaptive Kalman Filter in Geomagnetic Attitude Detection System. ACTA ARMAMENTARII, 2013, 34(9): 1155-1160. [Google Scholar]
  11. Gebre-Egziabher D. Magnetometer autocalibration leveraging measurement locus constraints.Journal of aircraft, 2007, 44(4): 1361-1368. [CrossRef] [Google Scholar]
  12. Fitzgibbon A, Pilu M, Fisher R B. Direct least square fitting of ellipses. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1999, 21(5): 476-480. [Google Scholar]
  13. Pratt V. Direct least-squares fitting of algebraic surfaces: ACM SIGGRAPH computer graphics. ACM, 1987, 21(4): 145-152. [CrossRef] [Google Scholar]
  14. Guo Peng-Fei, Hua Chun-Hong, Ren Zhang, et al. Magnetic deviation compensation using recursive least square for AHRS.Journal of Chinese Inertial Technology, 2008, 16(1): 24-27. [Google Scholar]
  15. Guan Bin, Gao Yang, Wang Cheng-Bin, et al. Online magnetic deviation calibration method based on recursive least square algorithm. Journal of Chinese Inertial Technology, 2012, 20(1): 69-73. [Google Scholar]
  16. Petrucha V, Kaspar P, Ripka P, et al. Automated system for the calibration of magnetometers. Journal of Applied Physics, 2009, 105(7): 675-704 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.