Open Access
Issue |
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 6 | |
Section | Circuit Simulation, Electric Modules and Displacement Sensor | |
DOI | https://doi.org/10.1051/matecconf/201823204002 | |
Published online | 19 November 2018 |
- J. Gubbi, R. Buyya, S. Marusic, M. Palaniswami. Internet of things (iot): a vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645-1660(2012) [Google Scholar]
- Z. Wang, J. Crowcroft. Quality-of-service routing for supporting multimedia applications. IEEE Journal on Selected Areas in Communications, 14(7), 1228-1234(2002) [CrossRef] [Google Scholar]
- S. Sutton, G. Barto. Introduction to reinforcement learning. Machine Learning, 16(1), 285-286(2005) [Google Scholar]
- R. Widyono. The design and evaluation of routing algorithms for real-time channels (1994) [Google Scholar]
- C. Pornavalai, G. Chakraborty, N. Shiratori. QoS based routing algorithm in integrated services packet networks. International Conference on Network Protocols, 1997. Proceedings (Vol.7, pp.167-174) (1997) [CrossRef] [Google Scholar]
- S. Chen, M. Song, S. Sahni. Two techniques for fast computation of constrained shortest paths. IEEE/ACM Transactions on Networking, 16(1), 105-115(2008) [CrossRef] [Google Scholar]
- Y. Cui, K. Xu, J. Wu. Precomputation for multiconstrained QoS routing in high-speed networks. Joint Conference of the IEEE Computer and Communications. IEEE Societies (Vol.2, pp.1414-1424 vol.2)(2003) [Google Scholar]
- P. Bose, P. Morin. Competitive online routing in geometric graphs. Theoretical Computer Science, 324(2), 273-288(2001) [CrossRef] [Google Scholar]
- D. B. Magnani, I. A. Carvalho, T. F. Noronha. Robust optimization for ospf routing. IFAC-PapersOnLine, 49(12), 461-466(2016) [Google Scholar]
- Y. Sun, L. Li, J. Qi. Cognitive networks qos routing optimization based on multi-objective genetic algorithm. Journal of Convergence Information Technology, 7(12), 215-225(2012) [Google Scholar]
- D. T. Hai. Multi-objective genetic algorithm for solving routing and spectrum assignment problem. Seventh International Conference on Information Science and Technology (pp.177-180)(2017) [Google Scholar]
- C. H. Qiu, Y. Gong, K. X.Zhou. The Research on QoS Routing Algorithm Based on Improved Optimization Sorting Ant Colony Algorithm. National Conference on Electrical, Electronics and Computer Engineering(2016) [Google Scholar]
- R. M. Entz, H. A. Porto, R. F. D. Oliveira, R. A. D. Lima. Efficient Aircraft Routing Algorithm Based on Ant Colony Optimization. Aiaa/issmo Multidisciplinary Analysis and Optimization Conference(2015) [Google Scholar]
- L. Zhang, L. B. Cai, M. Li, F. H. Wang. A method for least-cost qos multicast routing based on genetic simulated annealing algorithm. Computer Communications, 32(1), 105-110(2009) [CrossRef] [Google Scholar]
- M. Ramezani, M. Jahanshahi. Load-aware multicast routing in multi-radio wireless mesh networks using fca-cmac neural network. Computing(4), 1-29(2017) [Google Scholar]
- Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, et al. State-of-the-art deep learning: evolving machine intelligence toward tomorrow’s intelligent network traffic control systems. IEEE Communications Surveys & Tutorials, 19(4), 2432-2455(2017) [CrossRef] [Google Scholar]
- N. Kato, Z. M. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, et al. The deep learning vision for heterogeneous network traffic control: proposal, challenges, and future perspective. IEEE Wireless Communications, PP(99), 2-9(2016) [Google Scholar]
- T. Hu, Y. Fei. Qelar: a machine-learning-based adaptive routing protocol for energy-efficient and lifetime-extended underwater sensor networks. IEEE Transactions on Mobile Computing, 9(6), 796-809(2010) [CrossRef] [Google Scholar]
- S. C. Lin, I. F. Akyildiz, P. Wang, M. Luo. QoS-Aware Adaptive Routing in Multi-layer Hierarchical Software Defined Networks: A Reinforcement Learning Approach. IEEE International Conference on Services Computing (pp.25-33)(2016) [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.