Open Access
Issue
MATEC Web Conf.
Volume 232, 2018
2018 2nd International Conference on Electronic Information Technology and Computer Engineering (EITCE 2018)
Article Number 02002
Number of page(s) 7
Section 3D Images Reconstruction and Virtual System
DOI https://doi.org/10.1051/matecconf/201823202002
Published online 19 November 2018
  1. Wang Xin, Zhou Yun, Ning Chen, Shi Aiye. Image saliency detection via adaptive fusion of local and global sparse representation [J]. Journal of Computer Applications, 2018, 38(3): 866-872. [Google Scholar]
  2. Goferman S, Zelnikmanor L, Tal A. Context-aware saliency detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926. [CrossRef] [Google Scholar]
  3. Cheng M M, Mitra N J, Huang X, et al. Global contrast based salient region detection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 569-582. [CrossRef] [Google Scholar]
  4. Liu N, Han J. DHSNet:deep hierarchical saliency network for salient object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016: 678-686. [CrossRef] [Google Scholar]
  5. Kim W, Kim C. Spatiotemporal saliency detection using textural contrast and its applications [J]. IEEE Transactions on Circuits & Systems for Video Technology, 2014, 24(4): 646-659. [CrossRef] [Google Scholar]
  6. Yan Q, Xu L, Shi J, et al. Hierarchical saliency detection[C]//CVPR’13:Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2013: 1155-1162. [CrossRef] [Google Scholar]
  7. Wang X, Ning C, Xu L. Spatiotemporal saliency model for small moving object detection in infrared videos [J]. Infrared Physics & Technology, 2015, 69: 111-117. [CrossRef] [Google Scholar]
  8. Li Xiao, Ge Baozhen, Luo Qijun, Li Yunpeng, Tian Qingguo. Acquisition of camera dynamic extrinsic parameters in free binocular stereo vision syste [J]. Journal of Computer Applications, 2017, 37(10): 2888-2894. [Google Scholar]
  9. Zhang Quangui, Cai Feng, Li Zhiqiang. Human action recognition based on coupled multi-Hidden Markov model and depth image data. Journal of Computer Applications, 2018, 38(2): 454-457. [Google Scholar]
  10. Li Songlin, Jia Yong, Guo Yong, Zhong Xiaoling, Cui Guolong. Moving target tracking algorithm based on improved Camshift for through-wall-radar imaging [J]. Journal of Computer Applications, 2018, 38(2): 528-532. [Google Scholar]
  11. Tan Q Y, Leung H, Song Y, et al. Multipath ghost suppression for through-the-wall-radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 2284-2292. [CrossRef] [Google Scholar]
  12. Hu Min, Li Chong, Lu Rongrong, Huang Hongcheng. Performance analysis of motor imagery training based on 3D visual guidance [J]. Journal of Computer Applications, 2018, 38(3): 836-841. [Google Scholar]
  13. Ono T, Kimura A, Ushiba J. Daily training with realistic visual feedback improves reproducibility of event-related desynchronisation following hand motor imagery [J]. Clinical Neurophysiology, 2013, 124(9): 1779-1786. [CrossRef] [Google Scholar]
  14. Ren Shuai, Zhang Tao, Xu Zhenchao, Wang Zhen, He Yuan, Liu Yunong. Information hiding algorithm for 3D models based on feature point labeling and clustering [J]. Journal of Computer Applications, 2018, 38(4): 1017-1022. [Google Scholar]
  15. Hua S G, Zhong Q, Li S S. 3D shape deformation based on edge collapse mesh simplification [J]. Journal of Dalian University of Technology, 2011, 51(3): 363-367. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.