Open Access
Issue
MATEC Web Conf.
Volume 228, 2018
2018 3rd International Conference on Circuits and Systems (CAS 2018)
Article Number 01009
Number of page(s) 4
Section Intelligent Computing and Information Processing
DOI https://doi.org/10.1051/matecconf/201822801009
Published online 14 November 2018
  1. Athanassopoulos A.D.. Customer satisfaction cues to support market segmentation and explain switching behaviour. Journal of Business Research, 2000, vol.47, pp.191-207. [CrossRef] [Google Scholar]
  2. Jones M., Mothersbaugh D. and Betty S.. Switching barriers and repurchase intentions in services. Journal of Retailing, 2000, 76 (2): 257-272. [CrossRef] [Google Scholar]
  3. Thomas, J.S. A methodology for linking customer acquisition to customer retention. Journal of Marketing Research, 2001, 38 (2): 262-268. [CrossRef] [Google Scholar]
  4. Berry M J A, Linoff G. Data mining techniques: for marketing, sales, and customer support [M]. New York: Wiley, 1997. [Google Scholar]
  5. Mozer M.C., Wolniewicz R., Grimes D.B., et al. Churn Reduction in the Wireless Industry [J]. Advances in Neural Information Processing Systems, 2000, (12): 935-941. [Google Scholar]
  6. Lemmens A., Croux C.. Bagging and Boosting Classification Trees to Predict Churn [J]. Journal of Marketing Research, 2006, 43 (2): 276-286. [CrossRef] [Google Scholar]
  7. Chiang D., Wang Y., Lee S., Lin C.. Goal-Oriented Sequential Pattern for Network Banking Churn Analysis [J]. Expert Systems with Applications, 2003, 25 (3): 293-302. [CrossRef] [Google Scholar]
  8. Eiben A. E., Koudijs A. E., Slisser F. Genetic Modeling of Customer Retention [C]. Lecture Notes in Computer Science, 178-186, 1998. [CrossRef] [Google Scholar]
  9. Zhao Y., Li B., Li X., Liu W., Ren S. J. Customer Churn Prediction Using Improved One-Class Support Vector Machine [C]. Lecture Notes in Computer Science, 2005, (3584): 300-306. [CrossRef] [Google Scholar]
  10. Zeithaml V, Berry L, Parasuraman A. The behavioral consequences of service quality [J]. Journal of Marketing, 1996, 60 (4): 31-46. [CrossRef] [Google Scholar]
  11. Hamilton R.. How croft B. A practical approach to maximizing customer retention in the credit card industry [J]. Journal of Marketing Management, 1995, 11: 151-163. [CrossRef] [Google Scholar]
  12. Ainslie A, Pitt L. Customer retention analyses [J]. Journal of Direct Marketing, 1992, 6 (3): 31-43. [CrossRef] [Google Scholar]
  13. For nell C, Wernerfelt B. Defensive marketing strategy by customer complaint management: a theoretical analysis [J]. Journal of Marketing Research, 1987, 24 (11): 37-46. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.