Open Access
Issue
MATEC Web Conf.
Volume 219, 2018
2nd Baltic Conference for Students and Young Researchers (BalCon 2018)
Article Number 03008
Number of page(s) 8
Section Concrete Structures
DOI https://doi.org/10.1051/matecconf/201821903008
Published online 29 October 2018
  1. T. Wangler, E. Lloret, L. Reiter, N. Hack, F. Gramazio, M. Kohler, M. Bernhard, B. Dillenburger, J. Buchli, N. Roussel, et al., Digital Concrete: Opportunities and Challenges. RILEM Letters, 1, 67-75 (2016) [CrossRef] [Google Scholar]
  2. F. Bos, R. Wolfs, Z. Ahmed, T. Salet, Additive manufacturing of concrete in construction: Potentials and challenges of 3D concrete printing. Virtual and Physical Prototyping, 11, 1-17 (2016) [CrossRef] [Google Scholar]
  3. Y. Tay, B. Panda, S. Paul, N. Noor Mohamed, M. Tan, K. Leong, 3D printing trends in building and construction industry: A review. Virtual and Physical Prototyping, 12, 1-17 (2017) [CrossRef] [Google Scholar]
  4. A. Kazemian, X. Yuan, E. Cochran, B. Khoshnevis, Cementitious materials for construction-scale 3D printing: Laboratory testing of fresh printing mixture. Construction and Building Materials, 145, 639-647 (2017) [CrossRef] [Google Scholar]
  5. N. Carino, H. Lew, The Maturity Method: From Theory to Application. In Structures 2001; Chang, P., Ed.: American Society of Civil Engineers: Reston, VA, 1-19 (2001) [Google Scholar]
  6. S. Skibicki, Optimization of Cost of Building with Concrete Slabs Based on the Maturity Method. IOP Conf. Ser.: Mater. Sci. Eng., 245, 1-11 (2017) [CrossRef] [Google Scholar]
  7. R.J.M. Wolfs. 3d printind of concrete structures (graduation thesis): Eindhoven University of Technology, 1-110 (2015) [Google Scholar]
  8. A. Perrot, D. Rangeard, A. Pierre, Structural built-up of cement-based materials used for 3D-printing extrusion techniques. Mater Struct, 49, 1213-1220 (2016) [CrossRef] [Google Scholar]
  9. Mariak A., Wilde K., Wyznaczanie wytrzymałości betonu na podstawie funkcji dojrzałości wg amerykańskiej normy ASTM C1074-11. Materiały Budowlane, 4, 68-71 (2015) [Google Scholar]
  10. R. Nurse, Steam curing of concrete. Mag Concrete Res, 2, 79-88 (1949) [CrossRef] [Google Scholar]
  11. J. McIntosh, Electrical curing of concrete. Mag Concrete Res, 1, 21-28 (1949) [CrossRef] [Google Scholar]
  12. A. Saul, Principles underlying the steam curing of concrete at atmospheric pressure. Mag Concrete Res, 2, 127-140 (1951) [CrossRef] [Google Scholar]
  13. R. Tank, R. Carino, Rate Constant Functions for Strength Development of Concrete. ACI Materials Journal, 88 (1), 74-83 (1991) [Google Scholar]
  14. M. Kaszynska, Early age properties of high-strength/high-performance concrete. Cement and Concrete Composites, 24, 253-261 (2002) [CrossRef] [Google Scholar]
  15. H. Freiesleben, P. Pedersen, Curing of Concrete Structures. CEB Information Bulletin, 166, 1-42 (1985) [Google Scholar]
  16. J. Zhang, D. Cusson, P. Monteiro, J. Harvey, New perspectives on maturity method and approach for high performance concrete applications. Cement and Concrete Research, 38, 1436-1446 (2008) [Google Scholar]
  17. Knudsen T., The dispersion model for hydration of Portland cement: I. General concepts. Cement and Concrete Research, 14, 622-630 (1984) [CrossRef] [Google Scholar]
  18. P. Fjellström, J.-E. Jonasson, M. Emborg, H. and Hedlund, Model for Concrete Strength Development Including Strength Reduction at Elevated Temperatures. Nordic Concrete Research, 45/1, 25-44 (2012) [Google Scholar]
  19. ASTM C1074-11. Standard Practice for Estimating Concrete Strength by the Maturity Method. [Google Scholar]
  20. J. Myers. The Use of Maturity Methods as a Quality Control Tool for High Performance Concrete Bridge Decks: PCI / FHWA / FIB International Symposium on High Performance Concrete, 1-18 (2000) [Google Scholar]
  21. G. Ma, Z. Li, L. Wang, Printable properties of cementitious material containing copper tailings for extrusion based 3D printing. Construction and Building Materials, 162, 613-627 (2018) [CrossRef] [Google Scholar]
  22. T. Le, S. Austin, S. Lim, R. Buswell, R. Law, A.G.F. Gibb, T. Thorpe, Hardened properties of high-performance printing concrete. Cement and Concrete Research, 42, 558-566 (2012) [CrossRef] [Google Scholar]
  23. E. Secrieru, S. Fataei, C. Schröfl, V. Mechtcherine, Study on concrete pumpability combining different laboratory tools and linkage to rheology. Construction and Building Materials, 144, 451-461 (2017) [CrossRef] [Google Scholar]
  24. Z. Malaeb, H. Hachem, A. Tourbah, T. Maalouf, El Zarwi N., Hamzeh F., 3d concrete printing: Machine and mix design. International Journal of Civil Engineering and Technology (IJCIET), 6, 14-22 (2015) [Google Scholar]
  25. N. Roussel, F. Cussigh, Distinct-layer casting of SCC: The mechanical consequences of thixotropy. Cement and Concrete Research, 38, 624-632 (2008) [CrossRef] [Google Scholar]
  26. G. Ma, L. Wang, A critical review of preparation design and workability measurement of concrete material for largescale 3D printing. Front. Struct. Civ. Eng., 22, 382-400 (2017) [Google Scholar]
  27. C. Gosselin, R. Duballet, P. Roux, N. Gaudillière, J. Dirrenberger, P. Morel, Large-scale 3D printing of ultra-high performance concrete – a new processing route for architects and builders. Materials & Design, 100, 102-109 (2016) [CrossRef] [Google Scholar]
  28. Pinto R.C.A., Schindler A.K., Unified modeling of setting and strength development. Cement and Concrete Research, 40, 58-65 (2010) [CrossRef] [Google Scholar]
  29. Wade, S.A.; Schindler, A.K.; Barnes, R.W.; Nixon, J.M., Eds. Maturity Method Report No. 1: Highway Research Center and Department of Civil Engineering at Auburn University, 1-307 (2006) [Google Scholar]
  30. Brooks A.G., Schindler A.K., Barnes R.W., Maturity Method Evaluated for Various Cementitious Materials. Journal of Mat. in Civil Engineering, 19, 1017-1025 (2007) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.