Open Access
Issue
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 05015
Number of page(s) 8
Section Signal Processing
DOI https://doi.org/10.1051/matecconf/201821005015
Published online 05 October 2018
  1. M. Chmielewski, M. Nowotarski, Sensor-based supporting mobile system Parkinson disease clinical tests utilising biomedical and RFID technologies, MATEC Web Conf., vol. 125, (2017) [Google Scholar]
  2. R. LeMoyne, Wearable and wireless accelerometer systems for monitoring Parkinson's disease patients - A perspective review, Advances in Parkinson's Disease, 2, 113-115 (2013) [CrossRef] [Google Scholar]
  3. S.H. Roy, B.T. Cole, L.D. Gilmore, C.J. De Luca, C.A. Thomas, M.M. Saint-Hilaire, S.H. Nawab: High-Resolution Tracking of Motor Disorders in Parkinson's Disease During Unconstrained Activity, Movement Disorders, 28, 1080-1087 (2013) [CrossRef] [Google Scholar]
  4. S. Beniczky, T. Polster, T. W. Kjaer, H. Hjalgrim: Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: A prospective, multicenter study, Epilepsia, 54, 58-61 (2013) [CrossRef] [Google Scholar]
  5. M.M. Velez, R.S. Fisher, V. Bartlett, S. Le: Tracking generalized tonic-clonic seizures with a wrist accelerometer linked to an online database, Seizure, 39, 13-18 (2016) [CrossRef] [EDP Sciences] [Google Scholar]
  6. J.R. Villar, M. Menendez, J. Sedano, E. de la Cal, V.M. Gonzalez: Analyzing accelerometer data for epilepsy episode recognition, 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, 368, 39-48, Springer, Cham (2015) [CrossRef] [Google Scholar]
  7. SENSE project Wiki: http://uranus.wat.edu.pl:8808/wiki/index.php/SENSE (access: 2018.05.05) [Google Scholar]
  8. PATRON project wiki: http://uranus.wat.edu.pl:8808/wiki/index.php/PATRON (access: 2018.05.05) [Google Scholar]
  9. Myo tech spec: (access: 2018.05.05) https://www.myo.com/techspecs [Google Scholar]
  10. B. Stern: Inside Myo, adafruit.com (2016): https://learn.adafruit.com/myo-armband-teardown/inside-myo [Google Scholar]
  11. Myo Bluetooth Low Energy specification file: https://github.com/thalmiclabs/myo-bluetooth/blob/master/myohw.h [Google Scholar]
  12. M. Abduo, M. Galster: Myo Gesture Control Armband for Medical Applications, University of Canterbury (2015) [Google Scholar]
  13. A. Phinyomark, P. Phukpattaranont, C. Limsakul, Feature reduction and selection for EMG signal classification, Expert Systems with Applications, vol. 39, (8), 2012, pp. 7420-7431 [CrossRef] [Google Scholar]
  14. M.B.I. Raez, M.S. Hussain, F. Mohd-Yasin, Techniques of EMG signal analysis: detection, processing, classification and applications, Biol Proced Online, 2006, vol. 8, pp. 11-35. [Google Scholar]
  15. M. Kiedrowicz, Location with the use of the RFID and GPS technologies - opportunities and threats, GIS ODYSSEY 2016, pp. 122-128, (2016). [Google Scholar]
  16. M. Kiedrowicz, Objects identification in the informations models used by information systems, GIS ODYSSEY 2016, pp. 129-136, (2016). [Google Scholar]
  17. M. Chmielewski, M. Nowotarski, The method for processing electromyography and inertial sensors supporting chosen set of neurological symptoms for clinical trials support and treatment assessment, WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE, vol. 14, (2017) [Google Scholar]
  18. M. Nowotarski: Development of decision algorithms using selected inertial and biomedical signals to identify neurological disorders utilising Android mobile platform., master's thesis, M. Chmielewski (supervisor), MUT, 2016, Warsaw [Google Scholar]
  19. R. Boostani M. H. Moradi, Evaluation of the forearm EMG signal features for the control of a prosthetic hand, Physiol Meas., 2003, 24(2), pp.309-319 [CrossRef] [Google Scholar]
  20. J. R. Wilkinson, handbook of Parkinson's Disease, 4th edition, Neurology, 2008, 71 (9) 699; [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.