Open Access
Issue
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 03009
Number of page(s) 6
Section Communications
DOI https://doi.org/10.1051/matecconf/201821003009
Published online 05 October 2018
  1. A. Iversen, N. K. Taylor, K. E. Brown and J. Krstad, Classification of Communication Signals and Detection of Unknown Formats Using Artificial Neural Networks, Edinburg EH 144 AS, UK:Intelligent Systems Laboratory, Heriot -Watt University, IEEE Nordic Signal Processing Symposium, pp. 6-20, 2006. [Google Scholar]
  2. M. Richterova, Signal Modulation Recognizer Based on Method of Artificial Neural Networks, China:University of Defence, Czech Republic, Progress in Electromagnetics Research Symposium, August 22-26, pp. 575-578, 2005 [Google Scholar]
  3. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. New Delhi, India:Pearson Education, 2003 [Google Scholar]
  4. S. Haykin, Communication System, 4th ed. New Delhi, India:Wiley Publication, 2006. [Google Scholar]
  5. T. S. Rappaport, Wireless Communications: Principles and Practice, 2nd ed. New Delhi, India:Pearson Education, 2004 [Google Scholar]
  6. J.E. Giesbrecht, C. Russell, and A. Derek, “Modulation recognition for HF signals.” In Proc. SPIE, vol. 5649, pp. 501-512, 2004. [CrossRef] [Google Scholar]
  7. J.E. Giesbrecht, C. Russell, and A. Derek, “Modulation recognition for real HF signals.” In Proc. of SPIE Vol, vol. 6035, pp. 60351S-1, 2006. [CrossRef] [Google Scholar]
  8. H. Alharbi, M. Shoaib, A. Saleh and A. Fahd, “Automatic modulation classification of digital modulations in presence of HF noise.” EURASIP Journal on Advances in Signal Processing 2012, vol. 1, p. 238, 2012 [CrossRef] [Google Scholar]
  9. J. E. Giesbrecht, “A practical modulation recognition algorithm for HF signals and beyond,” 2016 IEEE 7th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), Vancouver, BC, pp. 1-8., 2016 [Google Scholar]
  10. S. Dorner, S. Cammerer, J. Hoydis, and S.T. Brink. “Deep learning-based communication over the air.” arXiv preprint arXiv:1707.03384, July 11, 2017 [Google Scholar]
  11. J.T. O’Shea, J. Corgan, and T.C. Clancy, “Convolutional radio modulation recognition networks.” In International Conference on Engineering Applications of Neural Networks, pp. 213-226, Springer International Publishing, September, 2016 [CrossRef] [Google Scholar]
  12. S Norouzi, A Jamshidi and A.R. Zolghadrasli “Adaptive modulation recognition based on the evolutionary algorithms,” Applied Soft Computing, pp.312-319.,Jun 30, 2016 [CrossRef] [Google Scholar]
  13. N.E. West and T.O Shea, “Deep architectures for modulation recognition,” 2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), Piscataway, NJ, pp. 1-6., 2017 [Google Scholar]
  14. T. O Shea and J. Hoydis, “An Introduction to Deep Learning for the Physical Layer,” in IEEE Transactions on Cognitive Communications and Networking, vol. no. 99, pp. 1-1., 2016 [Google Scholar]
  15. F. Liang, C. Shen and F. Wu, “An Iterative BP-CNN Architecture for Channel Decoding”, arXiv preprint arXiv:1707.05697, 18 July, 2017 [Google Scholar]
  16. X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier neural networks.” In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315-323, Jun14, 2011 [Google Scholar]
  17. J.T. O Shea and C. Johnathan, “Convolutional radio modulation recognition networks.” In International Conference on Engineering Applications of Neural Networks, Springer International Publishing, pp. 213-226., 2016 [Google Scholar]
  18. N. Samuel, T. Diskin, and A. Wiesel. “Deep MIMO Detection.” arXiv preprint arXiv:1706.01151, Jun 4, 2017. [Google Scholar]
  19. J.T. O’Shea, K. Kiran and T. C. Clancy, “Learning to communicate:Channel auto-encoders, domain specific regularizers, and attention.” In Signal Processing and Information Technology (ISSPIT), 2016 IEEE International Symposium, pp. 223-228., 2016. [CrossRef] [Google Scholar]
  20. J.T. O’Shea, E. Tugba, and T.C. Clancy. “Deep learning based mimo communications.” arXiv preprint arXiv:1707.07980, 2017. [Google Scholar]
  21. N. Farsad and A. Goldsmith. “Detection Algorithms for Communication Systems Using Deep Learning.” arXiv preprint arXiv:1705.08044, 2017. [Google Scholar]
  22. Y. LeCu, Y. Bengio, and G. Hinton. “Deep learning.” Nature 521, vol. 7553, pp.436-444, 2015 [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  23. J. Schmidhuber “Deep learning in neural networks: An overview.” Neural networks vol.61, pp. 85-117, 2015. [CrossRef] [PubMed] [Google Scholar]
  24. Y. Bengio “Learning deep architectures for AI.” Foundations and trends in Machine Learning 2, vol. 1, pp. 1-127, 2009. [CrossRef] [Google Scholar]
  25. A. Ali, Y. Fan, and L. Shu, “Automatic modulation classification of digital modulation signals with stacked autoencoders.” Digital Signal Processing, vol. 71, pp. 108-116, 2017. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.