Open Access
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 02049
Number of page(s) 9
Section Systems
Published online 05 October 2018
  1. [Google Scholar]
  2. a Name [Google Scholar]
  3. P. J. Westwick, Into the Black, Jale University Press, New Haven, 2007. [Google Scholar]
  4. [Google Scholar]
  5. A.B. Sergeyevsky, Interplanetary mission design handbook. Volume 1, part 1: Earth to Venus ballistic mission opportunities, 1991-2005,, 1983. [Google Scholar]
  6. A.B. Sergeyevsky, G.C. Snyder, R.A. Cunniff, Interplanetary mission design handbook. Volume 1, part 2: Earth to Mars ballistic mission opportunities, 1990-2005,, 1983. [Google Scholar]
  7. L.E. George, L.D. Kos, Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities and Mars-to-Earth Return Opportunities 2009-2024,, 1998. [Google Scholar]
  8. L.M. Burke, Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities 2026 to 2045,, 2010. [Google Scholar]
  9. S. Kemble, Interplanetary mission analysis and design, Springer Science & Business Media, 2006. [Google Scholar]
  10. G. R. Hintz, Orbital mechanics and astrodynamics: techniques and tools for space missions. Springer, 2015. [CrossRef] [Google Scholar]
  11. A. Shefer, New method of Orbit Determination from Two Position Vectors Based on Solving Gauss’s Equations, Solar System Research, Vol. 44, No. 3, pp. 252-266. [Google Scholar]
  12. [Google Scholar]
  13. E.Y. Choueiri, A critical history of electric propulsion: the frist 50 years (1906-1956), Journal of propulsion and power, vol 20, pp 193-203, 2004. [CrossRef] [Google Scholar]
  14. R.G. Jahn, E.Y. Choueiri, Electric propulsion, Encyclopedia of physical science and technology, New York: Academic press, 2002 [Google Scholar]
  15. F. Chang Diaz, E. Seedhouse, To Mars and Beyond, Fast!: How Plasma Propulsion Will Revolutionize Space Exploration, Springer Praxis Books, New York, 2017 [Google Scholar]
  16. G. Genta, Next Stop Mars: The Why, How, and When of Human Missions, Springer Praxis, New York, 2017. [CrossRef] [Google Scholar]
  17. J.S. Clark, J.A. George, L. Gefert, M. Doherty, R. Sefcik, Nuclear electric propulsion: A better, safer, cheaper transportation system for human exploration of Mars, NASA tecnical memoandum 06406, 1994 [Google Scholar]
  18. R. C. Woolley, A. K. Nicholas, SEP Mission Design Space for Mars Orbiters, AAS/AIAA Astrodynamics Specialist Conference, Vail, Colorado, Aug.. 2015 [Google Scholar]
  19. J. Z. Ben-Asher. Optimal Control Theory with Aerospace Applications, AIAA Education Series. Reston, VA, USA: American Institute of Aeronautics and Astronautics, 2010. isbn: 978-1600867323. [CrossRef] [Google Scholar]
  20. J.P. Marec, Optimal Space Trajectories, Elsevier, New York, 1979. [Google Scholar]
  21. D. B. Langmuir, Low-Thrust Flight. Constant exhaust velocity in Field-Free Space, in Space Technology, H. Seifert, Ed. (John Wiley and Sons, Inc., New York, 1959), Chap. 9. [Google Scholar]
  22. T.M. Edelbaum, Optimal Space Trajectories, Analytical Mechanics Associates, Jericho, 1969. [CrossRef] [Google Scholar]
  23. J.H. Irving, Low-Thrust Flight. Variable exhaust velocity in Gravitational Fields, in Space Technology, H. Seifert, Ed. (John Wiley and Sons, Inc., New York, 1959), Chap. 10. [Google Scholar]
  24. C. Circi Mars and Mercury missions using solar sails and solar electric propulsion, Journal of Guidance, Control, and Dynamics, Vol. 27(3), 2004, pp. 496--498. [CrossRef] [Google Scholar]
  25. S. N. Williams and V. L. Coverstone-Carroll Benefits of solar electric propulsion for the next generation of planetary exploration missions, The Journal of the Astronautical Sciences, Vol. 45(2), 1997, pp. 143--160. [Google Scholar]
  26. M. Kim, Continuous Low-Thrust Trajectory Optimization: Techniques and Applications, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2005. [Google Scholar]
  27. G. Genta, P. F. Maffione, Low Thrust Interplanetary Transfers: Second Approximation Computation of Planetocentric Phases, Advances in Aerospace Science and Technology, 2017, [Google Scholar]
  28. P.W. Keaton, Low Thrust Rocket Trajectories, LA-10625-MS, Los Alamos, 2002. [Google Scholar]
  29. G. Genta, P. F. Maffione, Optimal Low-Thrust Trajectories for Nuclear and Solar Electric Propulsion, Acta Astronautica, Vol. 118, p. 251-261, 2016. [CrossRef] [Google Scholar]
  30. [Google Scholar]
  31. [Google Scholar]
  32. L.F Shampine, M.W. Reichelt, and J. Kierzenka, Solving Boundary Value Problems for Ordinary Differential Equations in MATLAB with bvp4c, [Google Scholar]
  33. M. Rieck, M. Bittner, B. Gruter, and J. Diepolder. FALCON.m User Guide. Institute of Flight System Dynamics, Technical University of Munich, 2016. url: [Google Scholar]
  34. A. Wachter and L. T. Biegler. On the Implementation of a Primal-Dual Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Programming. In: Mathematical Programming Vol. 106. No. 1 (2006) [Google Scholar]
  35. J. T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear Programming. Second edition, Advances in Design and Control. Philadelphia: SIAM, Society for Industrial and Applied Mathematics, 2009. [Google Scholar]
  36. F. Topputo, C. Zhang. Survey of direct transcription for low-thrust space trajectory optimization with applications. In Abstract and Applied Analysis (Vol. 2014). Hindawi Publishing Corporation. [Google Scholar]
  37. H. White, P. March, et al. Measurement of Impulsive Thrust from a Closed Radio-Frequency Cavity in Vacuum, Journal of Propulsion and Power, 1, 12, 2016. [Google Scholar]
  38. G. Matloff, The starflight handbook, Wiley, New York, 1989. [Google Scholar]
  39. [Google Scholar]
  40. G. Genta, P. F. Maffione, Fast Human Mars Missions: what are the actual requirements, 10th IAA Symposium on the Future of Space Exploration: Towards the Moon Village and Beyond, Torino, June 2017. [Google Scholar]
  41. G. Genta, P. F. Maffione, A graphical tool to design two-ways human Mars missions, Acta Astronautica, to be published [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.