Open Access
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 02048
Number of page(s) 6
Section Systems
Published online 05 October 2018
  1. Faris, D. M., & Mahmood, D. M. F. M. B. Data acquisition of greenhouse using Arduino. Journal of University of Babylon, 22(7), 1908-1916. (2014). [Google Scholar]
  2. Shajahan, A. H., & Anand, A. Data acquisition and control using Arduino-Android platform: Smart plug. In Energy Efficient Technologies for Sustainability (ICEETS), 2013 International Conference on (pp. 241-244). IEEE. (2013, April). [CrossRef] [Google Scholar]
  3. Cubero, S., Aleixos, N., Moltó, E., Gómez-Sanchis, J., & Blasco, J. Advances in machine vision applications for automatic inspection and quality evaluation of fruits and vegetables. Food and Bioprocess Technology, 4(4), 487-504. (2011). [CrossRef] [Google Scholar]
  4. de Morais, C. D. L., Carvalho, J. C., Sant’Anna, C., Eugênio, M., Gasparotto, L. H., & Lima, K. M. A low-cost microcontrolled photometer with one color recognition sensor for selective detection of Pb 2+ using gold nanoparticles. Analytical Methods, 7(18), 7917-7922. (2015). [CrossRef] [Google Scholar]
  5. Wardana, H. K., Indahwati, E., & Fitriyah, L. A. Measurement of Non-Invasive Blood Glucose Level Based Sensor Color TCS3200 and Arduino. In IOP Conference Series: Materials Science and Engineering (Vol. 336, No. 1, p. 012019). IOP Publishing. (2018, April). [CrossRef] [Google Scholar]
  6. Agudo, J. E., Pardo, P. J., Sánchez, H., Pérez, Á. L., & Suero, M. I. A low-cost real color picker based on arduino. Sensors, 14(7), 11943-11956. [Google Scholar]
  7. Anzalone, G. C., Glover, A. G., & Pearce, J. M. (2013). Open-source colorimeter. Sensors, 13(4), 5338-5346. (2014). [CrossRef] [Google Scholar]
  8. Piyare, R., & Tazil, M. Bluetooth based home automation system using cell phone. In Consumer Electronics (ISCE), 2011 IEEE 15th International Symposium on (pp. 192-195). IEEE. (2011, June). [CrossRef] [Google Scholar]
  9. Baraka, K., Ghobril, M., Malek, S., Kanj, R., & Kayssi, A. Low cost arduino/android-based energy-efficient home automation system with smart task scheduling. In Computational Intelligence, Communication Systems and Networks (CICSyN), 2013 Fifth International Conference on (pp. 296-301). IEEE. (2013, June). [Google Scholar]
  10. Akbar, M. A. Simulation of fuzzy logic control for DC servo motor using Arduino based on MATLAB/Simulink. In Intelligent Autonomous Agents, Networks and Systems (INAGENTSYS), 2014 IEEE International Conference on (pp. 42-46). IEEE. (2014, August). [Google Scholar]
  11. Protopapas, C. A., Psaltiras, K. P., & Machias, A. V. An expert system for substation fault diagnosis and alarm processing. IEEE Transactions on Power Delivery, 6(2), 648-655. (1991). [CrossRef] [Google Scholar]
  12. Fuglsang-Frederiksen, A., Rønager, J., & Vingtoft, S. PC-KANDID: an expert system for electromyography. Artificial Intelligence in Medicine, 1(3), 117-124. (1989). [CrossRef] [Google Scholar]
  13. Goethe, J. W., & Bronzino, J. D. An expert system for monitoring psychiatric treatment. IEEE Engineering in Medicine and Biology Magazine, 14(6), 776-780. (1995). [CrossRef] [Google Scholar]
  14. Blanchet, B. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In csfw (Vol. 1, pp. 82-96). (2001, June). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.