Open Access
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 02046
Number of page(s) 4
Section Systems
Published online 05 October 2018
  1. Jung, Hyun Suk, and Nam.Gyu Park. Perovskite solar cells: from materials to devices, Materials views small 11.1, 10-25, (2015). [Google Scholar]
  2. Kojima, A., Teshima, K., Shirai, Y., & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), 6050-6051. (2009). [Google Scholar]
  3. Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science, 1228604. (2012). [Google Scholar]
  4. Kim, H. S., Lee, C. R., Im, J. H., Lee, K. B., Moehl, T., Marchioro, A., ... & Grätzel, M. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2, 591, (2012). [Google Scholar]
  5. Tianyue Wang, Jiewei Chen, Gaoxiang Wu and Meicheng Li. Optimal design of efficient hole transporting layer freeplanar perovskite solar cell, Sci China Mater 59(9): 703-709 (2016). [CrossRef] [Google Scholar]
  6. Snaith, H. J., Abate, A., Ball, J. M., Eperon, G. E., Leijtens, T., Noel, N. K., ... & Zhang, W. Anomalous hysteresis in perovskite solar cells. The journal of physical chemistry letters, 5(9), 1511-1515, (2014) [CrossRef] [PubMed] [Google Scholar]
  7. Dae Ho Song1, Min Hyeok Jang1, Min Ho Lee1, Jin Hyuck Heo1, Jin Kyoung Park1, Shi-Joon Sung2, Dae-Hwan Kim2, Ki-Ha Hong3 and Sang Hyuk Im1. A discussion on the origin and solutions of hysteresis in perovskite hybrid solar cells, J. Phys. D: Appl. Phys. 49 473001 (11pp) (2016). [CrossRef] [Google Scholar]
  8. Ajay Kumar Jena and Tsutomu Miyasaka. Hysteresis Characteristics and Device Stability, Organic-Inorganic Halide Perovskite Photovoltaics, ISBN 978-3-319-35112-4 (2016). [Google Scholar]
  9. Wei, J., Zhao, Y., Li, H., Li, G., Pan, J., Xu, D., ... & Yu, D. Hysteresis analysis based on the ferroelectric effect in hybrid perovskite solar cells. The journal of physical chemistry letters, 5(21), 3937-3945, (2014). [Google Scholar]
  10. Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K., & Grätzel, M. Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH 3NH 3 PbI 3 perovskite solar cells: the role of a compensated electric field. Energy & Environmental Science, 8(3), 995-1004, (2015). [CrossRef] [Google Scholar]
  11. Chen, Haining, and Shihe Yang. Carbon-Based Perovskite Solar Cells without Hole Transport Materials: The Front Runner to the Market. Advanced Materials (2017). [Google Scholar]
  12. Ito, S., Murakami, T. N., Comte, P., Liska, P., Grätzel, C., Nazeeruddin, M. K., & Grätzel, M. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin solid films, 516(14), 4613-4619, (2008). [CrossRef] [Google Scholar]
  13. Kim, H. S., & Park, N. G. Parameters affecting I-V hysteresis of CH3NH3PbI3 perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2 layer. The journal of physical chemistry letters, 5(17), 2927-2934, (2014). [Google Scholar]
  14. Song, Z., Watthage, S. C., Phillips, A. B., Tompkins, B. L., Ellingson, R. J., & Heben, M. J. Impact of processing temperature and composition on the formation of methylammonium lead iodide perovskites. Chemistry of Materials, 27(13), 4612-4619, (2015). [CrossRef] [Google Scholar]
  15. Li, H., Yang, Y., Feng, X., Shen, K., Li, H., Li, J., ... & Song, F. Performance improvement of CH3NH3PbI3 perovskite solar cell by CH3SH doping. Nanomaterials and Nanotechnology, 6, 24, (2016). [CrossRef] [Google Scholar]
  16. Cojocaru, L., Uchida, S., Jayaweera, P. V., Kaneko, S., Nakazaki, J., Kubo, T., & Segawa, H. Origin of the Hysteresis in I-V Curves for Planar Structure Perovskite Solar Cells Rationalized with a Surface Boundary-induced Capacitance Model. Chemistry Letters, 44(12), 1750-1752, (2015). [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.