Open Access
Issue
MATEC Web Conf.
Volume 210, 2018
22nd International Conference on Circuits, Systems, Communications and Computers (CSCC 2018)
Article Number 02019
Number of page(s) 9
Section Systems
DOI https://doi.org/10.1051/matecconf/201821002019
Published online 05 October 2018
  1. Basili R. et al.: Ontology-driven Information Retrieval in FF-Poirot. (2003) [Google Scholar]
  2. Jarrar M., Meersman R.: Ontology Engineering - The DOGMA Approach. In: Advances in Web Semantics I. LNCS, vol. 4891, Springer (2008) [Google Scholar]
  3. Chmielewski M.: Ontology-based association assessment method using graph and logic reasoning techniques. Ph.D. thesis, Military University of Technology, Warsaw (2011) [Google Scholar]
  4. Ministry of Finance Republic of Poland, http://www.mf.gov.pl/ministerstwo-finansow/dzialalnosc/giif/system [Google Scholar]
  5. Dentler K. et al.: Comparison of Reasoners for large Ontologies in the OWL 2 EL Profile. In: Semantic Web, vol. 2 (2011) [Google Scholar]
  6. Chmielewski M., Stąpor P.: Medical Data Unification Using Ontology-Based Semantic Model Structural Analysis, Proceedings of 36th International Conference on Information Systems Architecture and Technology, (2016) [Google Scholar]
  7. Chmielewski M., Stąpor P. Money Laundering Analytics Based on Contextual Analysis. Application of Problem Solving Ontologies in Financial Fraud Identification and Recognition, Information Systems Architecture and Technology - ISAT 2016 - Part I. Advances in Intelligent Systems and Computing, vol 521. Springer, Cham, (2017) [Google Scholar]
  8. Barthelemy M. et al.: Knowledge Representation Issues in Semantic Graphs for Relationship Detection. In: AAAI Spring Symposium: AI Technologies for Homeland Security. (2005) [Google Scholar]
  9. Chmielewski M., Stąpor P.: Protégé based environment for DL knowledge base structural analysis. In: Computational Collective Intelligence. Technologies and Applications (2011). [Google Scholar]
  10. Chmielewski M., Paciorkowska M., Kiedrowicz M., A semantic similarity evaluation method and a tool utilised in security applications based on ontology structure and lexicon analysis, 21st International Conference on Circuits, Systems, Communications and Computers (CSCC 2017), Greece, July 14-17, 2017 [Google Scholar]
  11. Kiedrowicz M., et al., Business process data flow between automated and human tasks, 3rd International Conference on Social Science (ICSS 2016) December 9-11 2016, pp. 471-477, (2016). [Google Scholar]
  12. Leary R.M., et al., Towards a financial fraud ontology; a legal modelling approach. In Proceedings of the ICAIL 2003 Workshop on Legal Ontologies & Web based legal information management, 2003. [Google Scholar]
  13. Chalamish M, et al. Intelligent evaluation of evidence using Wigmore diagrams. In Proceedings of the 13th International Conference on Artificial Intelligence and Law, ICAIL ’11, pages 61-65, New York, NY, USA, 2011. ACM. [Google Scholar]
  14. Rommel N Carvalho et al. Probabilistic ontology and knowledge fusion for procurement fraud detection in Brazil. URSW, 527:3-14, 2009. [Google Scholar]
  15. Kathryn B Laskey et al. Pr-owl 2 case study: A maritime domain probabilistic ontology. In STIDS, pages 76-83, (2011). [Google Scholar]
  16. Peter Spyns et al. Evaluating dogma-lexons generated automatically from a text corpus. STAR, 2004(13):13, 2004. [Google Scholar]
  17. Ton Kuijlen and Grzegorz Migut. Wykrywanie nadużyć i prania brudnych pieniędzy. Stat Soft, pages 71-80, 2004. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.