Open Access
Issue
MATEC Web Conf.
Volume 207, 2018
International Conference on Metal Material Processes and Manufacturing (ICMMPM 2018)
Article Number 01004
Number of page(s) 4
Section Civil Engineering
DOI https://doi.org/10.1051/matecconf/201820701004
Published online 18 September 2018
  1. C. Meyer, The greening of the concrete industry, Cement and Concrete Composites 31(8) (2009) 601–605. [CrossRef] [Google Scholar]
  2. J. Yu, C. Lu, C.K.Y. Leung, G. Li, Mechanical properties of green structural concrete with ultrahigh-volume fly ash, Construction and Building Materials 147 (2017) 510–518. [CrossRef] [Google Scholar]
  3. A. Bilodeau, V.M. Malhotra, High-Volume Fly Ash System: Concrete Solution for Sustainable Development, Aci Materials Journal 97(1) (2000) págs. 41–48. [Google Scholar]
  4. P.K. Mehta, High-performance, high-volume fly ash concrete for sustainable development, 2004 Symposium on cement concrete technology and sustainable development 24 (2002). [Google Scholar]
  5. H.A. Alaka, L.O. Oyedele, High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer, Journal of Building Engineering 8 (2016) 81–90. [CrossRef] [Google Scholar]
  6. E.G. Moffatt, M.D.A. Thomas, A. Fahim, Performance of high-volume fly ash concrete in marine environment, Cement and Concrete Research 102 (2017) 127–135. [CrossRef] [Google Scholar]
  7. P. Jiang, L. Jiang, J. Zha, Z. Song, Influence of temperature history on chloride diffusion in high volume fly ash concrete, Construction and Building Materials 144 (2017) 677–685. [CrossRef] [Google Scholar]
  8. O. Karahan, Transport properties of high volume fly ash or slag concrete exposed to high temperature, Construction and Building Materials 152 (2017) 898–906. [CrossRef] [Google Scholar]
  9. F.U.A. Shaikh, S.W.M. Supit, Chloride induced corrosion durability of high volume fly ash concretes containing nano particles, Construction and Building Materials 99 (2015) 208–225. [CrossRef] [Google Scholar]
  10. P. Van den Heede, E. Gruyaert, N. De Belie, Transport properties of high-volume fly ash concrete: Capillary water sorption, water sorption under vacuum and gas permeability, Cement and Concrete Composites 32(10) (2010) 749–756. [CrossRef] [Google Scholar]
  11. ASTM-C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, ASTM International. [Google Scholar]
  12. P.J.M. Monteiro, Concrete : Microstructure, Properties, and Materials / P.K. Mehta, P.J.M. Monteiro, McGraw-Hill Professional (1993). [Google Scholar]
  13. R.U.D. Nassar, P. Soroushian, T. Ghebrab, Field investigation of high-volume fly ash pavement concrete, Resources Conservation & Recycling 73(2) (2013) 78–85. [CrossRef] [Google Scholar]
  14. R. Siddique, K. Kapoor, E.H. Kadri, R. Bennacer, Effect of polyester fibres on the compressive strength and abrasion resistance of HVFA concrete, Construction & Building Materials 29(4) (2012) 270–278. [CrossRef] [Google Scholar]
  15. Y. Khodair, B. Bommareddy, Self-consolidating concrete using recycled concrete aggregate and high volume of fly ash, and slag, Construction and Building Materials 153 (2017) 307–316. [CrossRef] [Google Scholar]
  16. I. Ignjatović, Z. Sas, J. Dragaš, J. Somlai, T. Kovács, Radiological and material characterization of high volume fly ash concrete, Journal of Environmental Radioactivity 168 (2017) 38–45. [CrossRef] [Google Scholar]
  17. M. Nokken, Standardized Testing for Determining the Durability of High Volume Fly Ash Mixtures, Journal of Materials in Civil Engineering 97(26) (2012) 206–210. [Google Scholar]
  18. M.-H. Zhang, J. Islam, Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag, Construction and Building Materials 29 (2012) 573–580. [CrossRef] [Google Scholar]
  19. Y. Khodair, M. Raza, Sustainable self-consolidating concrete using recycled asphalt pavement and high volume of supplementary cementitious materials, Construction and Building Materials 131 (2017) 245–253. [CrossRef] [Google Scholar]
  20. F.U.A. Shaikh, S.W.M. Supit, Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA), Construction and Building Materials 82 (2015) 192–205. [CrossRef] [Google Scholar]
  21. X. Wei, H. Zhu, G. Li, C. Zhang, L. Xiao, Properties of high volume fly ash concrete compensated by metakaolin or silica fume, Journal of Wuhan University of Technology-Mater. Sci. Ed. 22(4) (2007) 728–732. [CrossRef] [Google Scholar]
  22. W. Chalee, P. Ausapanit, C. Jaturapitakkul, Utilization of fly ash concrete in marine environment for long term design life analysis, Materials & Design 31(3) (2010) 1242–1249. [CrossRef] [Google Scholar]
  23. A. Durán-Herrera, C.A. Juárez, P. Valdez, D.P. Bentz, Evaluation of sustainable high-volume fly ash concretes, Cement and Concrete Composites 33(1) (2011) 39–45. [CrossRef] [Google Scholar]
  24. C.D. Atiş, High-Volume Fly Ash Concrete with High Strength and Low Drying Shrinkage, Journal of Materials in Civil Engineering 15(2) (2003) 153–156. [CrossRef] [Google Scholar]
  25. G. Hannesson, K. Kuder, R. Shogren, D. Lehman, The influence of high volume of fly ash and slag on the compressive strength of self-consolidating concrete, Construction & Building Materials 30(30) (2012) 161–168. [CrossRef] [Google Scholar]
  26. C.-H. Huang, S.-K. Lin, C.-S. Chang, H.-J. Chen, Mix proportions and mechanical properties of concrete containing very high-volume of Class F fly ash, Construction and Building Materials 46 (2013) 71–78. [CrossRef] [Google Scholar]
  27. A. Gholampour, T. Ozbakkaloglu, Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag, Journal of Cleaner Production 162 (2017) 1407–1417. [CrossRef] [Google Scholar]
  28. K. Kuder, D. Lehman, J. Berman, G. Hannesson, R. Shogren, Mechanical properties of self consolidating concrete blended with high volumes of fly ash and slag, Construction & Building Materials 34(34) (2012) 285–295. [CrossRef] [Google Scholar]
  29. X.-Y. Wang, K.-B. Park, Analysis of compressive strength development of concrete containing high volume fly ash, Construction and Building Materials 98 (2015) 810–819. [CrossRef] [Google Scholar]
  30. S. Yoon, P.J.M. Monteiro, D.E. Macphee, F.P. Glasser, M.S.-E. Imbabi, Statistical evaluation of the mechanical properties of high-volume class F fly ash concretes, Construction and Building Materials 54 (2014) 432–442. [CrossRef] [Google Scholar]
  31. S.-W. Yoo, G.-S. Ryu, J.F. Choo, Evaluation of the effects of high-volume fly ash on the flexural behavior of reinforced concrete beams, Construction and Building Materials 93 (2015) 1132–1144. [CrossRef] [Google Scholar]
  32. M. Reiner, K. Rens, High-Volume Fly Ash Concrete: Analysis and Application, Practice Periodical on Structural Design & Construction 11(1) (2006) 58–64. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.