Open Access
MATEC Web Conf.
Volume 203, 2018
International Conference on Civil, Offshore & Environmental Engineering 2018 (ICCOEE 2018)
Article Number 04004
Number of page(s) 11
Section Geotechnical Engineering
Published online 17 September 2018
  1. L. Pieri, M. Bittelli, M. Hanuskova, F. Ventura, A. Vicari, and P. R. Pisa, “Characteristics of eroded sediments from soil under wheat and maize in the North Italian Apennines,” Geoderma, 154, pp. 20-29 (2009). [CrossRef] [Google Scholar]
  2. D. Yang, S. Kanae, T. Oki, T. Koike, and K. Musiake, “Global potential soil erosion with reference to land use and climate changes,” Hydrological processes, 17, pp. 2913-2928 (2003). [CrossRef] [Google Scholar]
  3. I. Sujaul, G. M. Barzani, B. Ismail, A. Sahibin, and T. M. Ekhwan, “Estimation of the rate of soil erosion in the tasik chini catchment, Malaysia using the RUSLE model integrated with the GIS,” Australian Journal of Basic and Applied Sciences, 6, pp. 286-296 (2012). [Google Scholar]
  4. A. Veihe, “Sustainable farming practices: Ghanaian farmers’ perception of erosion and their use of conservation measures,” Environmental Management, 25, pp. 393-402, (2000). [CrossRef] [Google Scholar]
  5. A. Brunner, S. Park, G. Ruecker, R. Dikau, and P. Vlek, “Catenary soil development influencing erosion susceptibility along a hillslope in Uganda,” Catena, 58, pp. 1-22, (2004). [CrossRef] [Google Scholar]
  6. Z. Shi, L. Ai, X. Li, X. Huang, G. Wu, and W. Liao, “Partial least-squares regression for linking land-cover patterns to soil erosion and sediment yield in watersheds,” Journal of Hydrology, 498, pp. 165-176, (2013). [CrossRef] [Google Scholar]
  7. M. B. Gasim, S. Surif, M. E. Toriman, S. A. Rahim, R. Elfithri, and P. I. Lun, “Land-use change and climate-change patterns of the Cameron Highlands, Pahang, Malaysia,” The Arab World Geographer, 12, pp. 51-61 (2009). [Google Scholar]
  8. B. Aminuddin, M. Ghulam, W. Y. W. Abdullah, M. Zulkefli, and R. Salama, “Sustainability of current agricultural practices in the Cameron Highlands, Malaysia,” Water, Air, & Soil Pollution: Focus, 5, pp. 89-101 (2005). [CrossRef] [Google Scholar]
  9. V. Prasannakumar, R. Shiny, N. Geetha, and H. Vijith, “Spatial prediction of soil erosion risk by remote sensing, GIS and RUSLE approach: a case study of Siruvani river watershed in Attapady valley, Kerala, India,” Environmental Earth Sciences, 64, pp. 965-972 (2011). [CrossRef] [Google Scholar]
  10. L. Tamene and Q. B. Le, “Estimating soil erosion in sub-Saharan Africa based on landscape similarity mapping and using the revised universal soil loss equation (RUSLE),” Nutrient cycling in agroecosystems, 102, pp. 17-31 (2015). [CrossRef] [Google Scholar]
  11. A. Basith, “Landslide susceptibility modelling under environmental changes: A case study of Cameron Highlands, Malaysia.,” PhD, Department of Civil Engineering, Universiti Teknologi Petronas, Malaysia (2011). [Google Scholar]
  12. C. Conoscenti, C. Di Maggio, and E. Rotigliano, “Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily,” Natural Hazards, 46, pp. 287-305 (2008). [CrossRef] [Google Scholar]
  13. L. Jansen, M. S. Lariyah, N. M. D. Mohamed, and Y. J. Pierre, “Challenge in running hydropower as source of clean energy: Ringlet reservoir, Cameron Highlands case study,” presented at the Proceedings National Graduate Conference, Universiti Tenaga Nasional,, Malaysia (2012). [Google Scholar]
  14. O. Jaafar, M. E. Toriman, S. S. Mastura, M. B. Gazim, P. I. Lun, P. Abdullah, et al., “Modeling the impacts of ringlet reservoir on downstream hydraulic capacity of bertain river using XPSWMM in cameron highlands, Malaysia,” Research Journal of Applied Sciences, 5, pp. 47-53 (2010). [CrossRef] [Google Scholar]
  15. S. Beguería, “Identifying erosion areas at basin scale using remote sensing data and GIS: a case study in a geologically complex mountain basin in the Spanish Pyrenees,” International Journal of Remote Sensing, 27, pp. 4585-4598 (2006). [CrossRef] [Google Scholar]
  16. A. Akgün and N. Türk, “Mapping erosion susceptibility by a multivariate statistical method: a case study from the Ayvalık region, NW Turkey,” Computers & geosciences, 37, pp. 1515-1524 (2011). [CrossRef] [Google Scholar]
  17. P. Magliulo, “Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate statistics-based approach,” Environmental Earth Sciences, 67, pp. 1801-1820 (2012). [CrossRef] [Google Scholar]
  18. B. Pradhan, “A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS,” Computers & Geosciences, 51, pp. 350-365 ((2013). [CrossRef] [Google Scholar]
  19. M. S. Tehrany, B. Pradhan, and M. N. Jebur, “Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS,” Journal of hydrology, 512, pp. 332-343 (2014). [CrossRef] [Google Scholar]
  20. P. Desmet and G. Govers, “A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units,” Journal of soil and water conservation, 51, pp. 427-433 (1996). [Google Scholar]
  21. W. H. Wischmeier and D. D. Smith, “Predicting rainfall erosion losses-A guide to conservation planning,” U.S. Department of Agriculture, Agriculture Handbook, 537, 1978. [Google Scholar]
  22. R. Parveen and U. Kumar, “Integrated approach of universal soil loss equation (USLE) and geographical information system (GIS) for soil loss risk assessment in Upper South Koel Basin, Jharkhand,” Journal of Geographic Information System, 4, p. 588 (2012). [CrossRef] [Google Scholar]
  23. C. Okereke, N. Onu, C. Akaolisa, D. Ikoro, S. Ibeneme, B. Ubechu, et al., “Mapping gully erosion using remote sensing technique: A case study of Okigwe area, southeastern Nigeria,” International Journal of Engineering Research and Applications (IJERA), 2, pp. 1955-1967 (2012). [Google Scholar]
  24. R. Sakthivel, N. J. Raj, V. Pugazhendi, S. Rajendran, and A. Alagappamoses, “Remote Sensing and GIS for Soil Erosion Prone areas Assessment: A case study from Kalrayan hills, Part of Eastern Ghats, Tamil Nadu, India,” Archives of Applied Science Research, 3, pp. 369-376 (2011). [Google Scholar]
  25. S. Pal, “Identification of soil erosion vulnerable areas in Chandrabhaga river basin: a multi-criteria decision approach,” Modeling Earth Systems and Environment, 2, p. 5, (2016). [CrossRef] [Google Scholar]
  26. A. Yalcin, S. Reis, A. Aydinoglu, and T. Yomralioglu, “A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey,” Catena, 85, pp. 274-287, (2011). [CrossRef] [Google Scholar]
  27. T. Kavzoglu, E. K. Sahin, and I. Colkesen, “Selecting optimal conditioning factors in shallow translational landslide susceptibility mapping using genetic algorithm,” Engineering Geology, 192, pp. 101-112 (2015). [CrossRef] [Google Scholar]
  28. H. Vijith, M. Suma, V. Rekha, C. Shiju, and P. Rejith, “An assessment of soil erosion probability and erosion rate in a tropical mountainous watershed using remote sensing and GIS,” Arabian Journal of Geosciences, 5, pp. 797-805 (2012). [CrossRef] [Google Scholar]
  29. B. Wang, F. Zheng, M. J. Römkens, and F. Darboux, “Soil erodibility for water erosion: A perspective and Chinese experiences,” Geomorphology, 187, pp. 1-10 (2013). [CrossRef] [Google Scholar]
  30. R. Wawer, E. Nowocien, and B. Podolski, “Eal and calculated Kusle erodibility factor for selected Polish soils,” Polish Journal of Environmental Studies, 14, pp. 655-658 (2005). [Google Scholar]
  31. T. S. Abdulkadir, M. R. Muhammad, W. Y. Khamaruzaman, and H. M. Ahmad, “Assessing the influence of terrain characteristics on spatial distribution of satellite derived land surface parameters in mountainous areas,” in 37th IAHR World Congress, Kuala Lumpur Malaysia (2017). [Google Scholar]
  32. T. S. Abdulkadir, M. R. Mustafa, Y. W. Khamaruzaman, and A. M. Hashim, “Evaluation of rainfall-runoff erosivity factor for Cameron Highlands, Pahang, Malaysia,” Journal of Ecological Engineering, 17, pp. 1-8 (2016). [Google Scholar]
  33. M. S. Tehrany, B. Pradhan, S. Mansor, and N. Ahmad, “Flood susceptibility assessment using GIS-based support vector machine model with different kernel types,” Catena, 125, pp. 91-101 (2015). [CrossRef] [Google Scholar]
  34. W. Y. Khamaruzaman, M. B. Nuraddeen, R. M. Muhammad, and H. I. Mohamed, “Linear kernel support vector machines for modeling pore-water pressure responses,” Journal of Engineering Science and Technology, 12, pp. 2202-2212 (2017). [Google Scholar]
  35. M. Marjanović, M. Kovačević, B. Bajat, and V. Voženílek, “Landslide susceptibility assessment using SVM machine learning algorithm,” Engineering Geology, 123, pp. 225-234 (2011). [CrossRef] [Google Scholar]
  36. M. N. Jebur, B. Pradhan, and M. S. Tehrany, “Optimization of landslide conditioning factors using very high-resolution airborne laser scanning (LiDAR) data at catchment scale,” Remote Sensing of Environment, 152, pp. 150-165 (2014). [CrossRef] [Google Scholar]
  37. O. F. Althuwaynee, B. Pradhan, and S. Lee, “Application of an evidential belief function model in landslide susceptibility mapping,” Computers & Geosciences, 44, pp. 120-135 (2012). [CrossRef] [Google Scholar]
  38. M. S. Tehrany, F. Shabani, D. N. Javier, and L. Kumar, “Soil erosion susceptibility mapping for current and 2100 climate conditions using evidential belief function and frequency ratio,” Geomatics, Natural Hazards and Risk, pp. 1-20 (2017). [Google Scholar]
  39. S. Lee and B. Pradhan, “Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models,” Landslides, 4, pp. 33-41 (2007). [CrossRef] [Google Scholar]
  40. B. Pradhan, A. Chaudhari, J. Adinarayana, and M. F. Buchroithner, “Soil erosion assessment and its correlation with landslide events using remote sensing data and GIS: a case study at Penang Island, Malaysia,” Environmental monitoring and assessment, 184, p. 715 (2012). [CrossRef] [Google Scholar]
  41. Hamid Reza Pourghasemi, Abbas Goli Jirandeh, Biswajeet Pradhan, Chong Xu, and Candan Gokceoglu, “Landslide susceptibility mapping using support vector machine and GIS at the Golestan Province, Iran,” J. Earth Syst. Sci., vol. 122, pp. 349-369, 2013. [CrossRef] [Google Scholar]
  42. A. Imeson and H. Lavee, “Soil erosion and climate change: the transect approach and the influence of scale,” Geomorphology, 23, pp. 219-227 (1998). [CrossRef] [Google Scholar]
  43. J. R. Landis and G. G. Koch, “The measurement of observer agreement for categorical data,” Biometrics, 33, pp. 159-174 (1977). [CrossRef] [MathSciNet] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.