Open Access
Issue
MATEC Web Conf.
Volume 201, 2018
2017 The 3rd International Conference on Inventions (ICI 2017)
Article Number 05004
Number of page(s) 7
Section Invention of numerical scheme and application
DOI https://doi.org/10.1051/matecconf/201820105004
Published online 14 September 2018
  1. R. M. Cormack, “A Review of Classification,” Journal of the Royal Statistical Society (Series A), Vol. 134, No. 3, pp. 321-367, 1971. [CrossRef] [Google Scholar]
  2. J. M. CAMIN and R. S. SOKAL, “A Method for Deducing Branching Sequences in Phylogeny,” Evolution, Vol. 19, No. 3, pp. 311-326, 1965. [CrossRef] [Google Scholar]
  3. P. O. Duda and P. E. Hart, “Pattern classification and scene analysis,” Wiley, NY, USA, 1973. [Google Scholar]
  4. J. A. Hartigan, “Representation of Similarity Batrices by Trees,” Journal of the American Statistical Association, Vol. 62, No. 320, pp. 1140-1158, 1967. [CrossRef] [Google Scholar]
  5. S. B. Kotsiantis, “Supervised Machine Learning: A Review of Classification Techniques,” Informatica, Vol. 31, pp. 249-268, 2007. [Google Scholar]
  6. L. G. Valiant, “A Theory of the Learnable,” Communications of the ACM, Vol. 27, pp. 1134-1142, 1984. [CrossRef] [Google Scholar]
  7. M. Kearns and L. Valiant, “Learning Boolean Formulae or Finite Automata is as Hard as Factoring,” Technical Report, TR-14-88, Aiken Computation Laboratory, Karrard University, Cambridge, MA. [Google Scholar]
  8. R. E. Schapire, “The Strength of Weak Learnability,” Machine Learning, Vol. 5, pp. 197-227, 1990 [Google Scholar]
  9. Y. Freund, “Boosting a Weak Learning Algorithm by Majority,” Information and Computation, Vol. 121, pp. 256-285, 1995. [CrossRef] [Google Scholar]
  10. Y. Freund and R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting,” Journal of Computer and System Sciences, Vol. 55, No. 1, pp. 119-139, 1997. [Google Scholar]
  11. G. Peter Zhang, “Neural Networks for Classification: A Survey,” IEEE Transactions on Systems, Man, and Cybernetics:Applications and Reviews, Vol. 30, No. 4, pp. 451-462, Nov. 2000. [Google Scholar]
  12. K. Devulapalli, “Neural Networks for Classification and Regression. Biom. Biostat. Int. J., Vol. 2, Issue 6, DOI: 10.15406/bbij.2015.02.00046S, 2015. [Google Scholar]
  13. L. A. Zadeh, “Fuzzy Sets,” Information and Control, Vol. 8, pp. 338-353, 1965. [Google Scholar]
  14. C. J. Lin and H.-Y. Lin, “Mobile Robot Wall-following Control Using a Fuzzy CMAC with Group-based Strategy Bacterial Foraging Optimization,” International Journal of Advanced Robotic Systems, Vol. 14, Issue 4, DOI: https://doi.org/10.1177/1729881417720872, July 14, 2017. [Google Scholar]
  15. J. Zhu, H. Zou, S. Rosset and T. Hastie, “Multi-class AdaBoost,” Statistics and Its Interface, Vol. 2, pp.349-360, 2009. [CrossRef] [MathSciNet] [Google Scholar]
  16. C. H. Cheng, M. T. Su, C. J. Lin, and C. T. Lin, “A Hybrid of Bacterial Foraging Optimization and Particle Swarm Optimization for Evolutionary Neural Fuzzy Classifier,” International Journal of Fuzzy Systems, Vol. 16, No. 3, September 2014, pp. 422-433. [Google Scholar]
  17. J. C. Patra, R. N. Pal, B. N. Chatterji and G. Panda, “Identification of Nonlinear Dynamic Systems Using Functional Link Artificial Neural Networks,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 29, No. 2, pp. 254-262, 1999. [CrossRef] [Google Scholar]
  18. UCI Machine Learning Repository, 2013, Available from URL: http://archive.ics.uci.edu/ml/ [Google Scholar]
  19. R. A. Fisher, “The Use of Multiple Measurements in Taxonomic Problems,” Annual Eugenics, Vol. 7, No.2, pp. 179-188, 1936. [Google Scholar]
  20. M. Forina, R. Leardi, C. Armanino, and S. Lanteri, “PARVUS - An Extendible Package for Data Exploration,” Journal of Chemometrics, Vol. 4, No. 2, pp. 191-194, 1990. [CrossRef] [Google Scholar]
  21. W. H. Wolberg and O. L. Mangasarian, “Multisurface method of pattern separation for medical diagnosis applied to breast cytology,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 87, pp. 9193-9196, 1990. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.