Open Access
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
Article Number 04003
Number of page(s) 6
Section Reinforcement Corrosion: Mechanisms, Prediction and Modelling
Published online 31 October 2018
  1. U. Angst, B. Elsener., C.K. Larsen, Ø. Vennesland, Critical chloride content in reinforced concrete — a review, Cem. Concr. Res. 39, 1122–1138 (2009) [CrossRef] [Google Scholar]
  2. B. Elsener, C. Andrade., J. Gulikers., R. Polder., M. Raupach., Half-cell potential measurements — Potential mapping on reinforced concrete structures, Mater. Struct. 36, 461–471 (2003) [Google Scholar]
  3. R. François, G. Arliguie., D. Bardy., Electrode potential measurements of concrete reinforcement for corrosion evaluation, Cement and Concrete Research, Vol. 24, n°3, 401–412 (1994) [Google Scholar]
  4. ASTM C876-09, “Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete”, ASTM International, West Conshohocken, PA (2009)[Google Scholar]
  5. P. Sandberg, Chloride initiated reinforcement corrosion in marine concrete, PhD thesis, Lund Institute of Technology, Division of Building Materials, Sweden (1998) [Google Scholar]
  6. U.M. Angst, B. Elsener., C.K. Larsen, U.M.Øystein Vennesland, chloride induced reinforcement corrosion: Electrochemical monitoring of initiation stage and chloride threshold values, Corrosion Science 53, 1451–1464 (2011) [Google Scholar]
  7. N.R. Jarrah, S. Baghabra., O. Al-Amoudi, M. Maslehuddin., A. Oluwatoyin Ashiru, Abdulaziz Ibrahim Al-Mana, Electrochemical behavior of steel in plain and blended cement concretes in sulfates and/or chloride environments, Construction and Building Materials 9, 97–103 (1995) [CrossRef] [Google Scholar]
  8. V. Bouteiller, C. Cremona., V. Baroghel-Bouny, A. Maloula., Corrosion initiation of reinforced concretes based on Portland or GGBS cements: Chloride contents and electrochemical characterizations versus time, Cement and Concrete Research 42, 1456–1467 (2012) [Google Scholar]
  9. Report of RILEM TC235 CTC in preparation [Google Scholar]
  10. Vincent Garcia, Raoul François, Myriam Carcasses, Philippe Gégout, Potential measurement to determine the chloride threshold concentration that initiates corrosion of reinforcing steel bar in slag concretes, Materials & Structures, Volume 47, Issue 9, 1483–1499 (2014) [Google Scholar]
  11. Stern, M., Geary, A.L. Electrochemical Polarization I. A Theoretical Analysis of the Shape of Polarization Curves, J.Electrochem. Soc. 104, 56–63 (1957) [Google Scholar]
  12. M. Stern, A.L. Geary, Electrochemical polarization, J. Electrochem. Soc. 104, 56–63 (1957) [CrossRef] [Google Scholar]
  13. C. Andrade, C. Alonso., J. Gulikers., R. Polder., R. Cigna., Ø. Vennesland, M. Salta., A. Raharinaivo., B. Elsener., Test methods for on-site corrosion rate measurement of steel reinforcement in concrete by means of the polarization resistance method, Mater. Struct. 37, 623–643 (2004) [Google Scholar]
  14. A. Clement, S. Laurens., G. Arliguie., F. Deby., Numerical study of the linear polarization resistance technique applied to reinforced concrete for corrosion assessment, Eur. J. Environ. Civ. Eng. 16, 491–504 (2012) [CrossRef] [Google Scholar]
  15. C. Wagner, W. E. Traud, Z. Elektrochem. Angew. Phys. Chem. 44, 397 (1938) [Google Scholar]
  16. A.A. Sagüés, S.C. Kranc, on the determination of polarization diagrams of reinforcing steel in concrete, Corrosion 48, 624–633 (1992) [CrossRef] [Google Scholar]
  17. J. Gulikers, Numerical simulation of corrosion rate determination by linear polarization, in: C. Andrade., C. Alonso., J. Fullea., J. Polimon., J. Rodriguez (Eds.),PRO 18: Measurement and Interpretation of the on-site corrosion rate, volume, Proceedings of the International Workshop MESINA, 145–156 (2015) [Google Scholar]
  18. S. Laurens, P. Hénocq, N. Rouleau, F. Deby., E. Samson., J.Marchand, B. Bissonnette., Steady-state polarization response of chloride-induced macrocell corrosion systems in steel reinforced concrete — numerical and experimental investigations, Cement and Concrete Research 79, 272–290 (2016) [Google Scholar]
  19. B. Elsener, Macrocell corrosion of steel in concrete — implications for corrosion monitoring, Cem. Concr. Compos. 24, 65–72 (2002) [CrossRef] [Google Scholar]
  20. U. Angst, M. Büchler, on the applicability of the Stern-Geary relationship to determine instantaneous corrosion rates in macro-cell corrosion, Mater. Corros. (2014) [Google Scholar]
  21. Raoul Francois, Stéphane Laurens, Fabrice Deby, Corrosion and its Consequences for Reinforced Concrete Structures, 1st Edition, eBook ISBN: 9780081023457, Hardcover ISBN: 9781785482342, Imprint: ISTE Press —Elsevier, 232, (2018) [Google Scholar]
  22. INTERNATIONAL STANDARD ISO 8407, Corrosion of metals and alloys-Removal of corrosion products from corrosion test specimens, Table A.1, C.3.2a, (2009) [Google Scholar]
  23. NF EN 14629, Afnor (2007) [Google Scholar]
  24. P. Ghods, O.B. Isgor, G.A. McRae, J. Li., G.P. Gu Microscopic investigation of mill scale and its proposed effect on the variability of chloride-induced depassivation of carbon steel rebar Corrosion Science 53, 946–954 (2011) [Google Scholar]
  25. E. Mahallati, M. Saremi., An assessment on the mill scale effects on the electrochemical characteristics of steel bars in concrete under DC-polarizationCement and Concrete Research 36, 1324–1329 (2006) [Google Scholar]
  26. A.T. Horne, I.G. Richardson, R.M.D. Brydson, Quantitative analysis of the microstructure of interfaces in steel reinforced concrete, Cement and Concrete Research 37, 1613–1623 (2007) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.