Open Access
Issue
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
Article Number 03007
Number of page(s) 11
Section Alkali Silica Reaction
DOI https://doi.org/10.1051/matecconf/201819903007
Published online 31 October 2018
  1. T.E. Stanton, Expansion of concrete through reaction between cement and aggregate., Proc. Amer. Soc. Civ. Eng., 66: 1781–1811(1940). [Google Scholar]
  2. Fulton, Concrete technology, Cem. Con. Inst., Midrand, South Africa. (2009). [Google Scholar]
  3. G. Blight, Mark. G. Alexander., Alkali-Aggregate Reaction and Structural Damage to Concrete. Taylor & Francis. (2008). [Google Scholar]
  4. M.S. Pourbehi, G.P.A.G. van Zijl, J.A.v.B. Strasheim, Numerical modelling of ASR in concrete dams, PhD Research proposal, Stellenbosch University, South Africa (2015) [Google Scholar]
  5. J. Newman, B.S. Choo, Adv. Con. Tech., Butterworth-Heinemann, Elsevier (2003). [Google Scholar]
  6. F. Glasser, Chemistry of the alkali-aggregate reaction. In R. Swamy., editor, The Alkali-silica Reaction in Concrete, pages 30 Van Nostrand Reinhold, New York. (1992) [Google Scholar]
  7. R.G. Chalrlwood, S.V. Solymar, D.D. Curtis, A review of alkali aggregate reactions in hydroelectric plants and dams, proceedings of the International Conference of Alkali-Aggregate Reaction in Hydroelectric Plants and Dams, Fed., Canada, 129 (1992) [Google Scholar]
  8. F. Ulm, O. Coussy, L. Kefei, C. Larive, Thermo-Chemo-Mechanics of ASR Expansion in Concrete Structures, J. Eng. Mech. V. 126, No. 3, (2000) [Google Scholar]
  9. B. Capra, A. Sellier, Orthotropic Modelling of Alkali-Aggregate Reaction in Concrete Structures: Num. Sim. Mech. Mat., V. 35, 817–830. (2003) [CrossRef] [Google Scholar]
  10. V. Saouma L. Perotti, Constitutive model for alkali aggregate reactions. ACI Mater. J. ;103 (2006) [Google Scholar]
  11. Z. P. Bažant, and A. Steffens, Mathematical model for kinetics of alkali-silica reaction in concrete. Cem. Con. Res., 30:419–428. (2000) [CrossRef] [Google Scholar]
  12. L., Dormieux, D. Kondo, F.J., Ulm, Microporo Mechanics, John Wiley & Sons Ltd., England. (2006) [Google Scholar]
  13. C. Dunant, K. Scrivener, Micro-mechanical modelling of alkali-silicareaction-induced degradation using the AMIE framework. Cem. Con. Res., 40:517–525. (2010) [CrossRef] [Google Scholar]
  14. I. Comby-Peyrot, F. Bernard, P. Bouchard, F. Bay, and E. Garcia-Diaz, Development and validation of a 3d computational tool to describe concrete behaviour at mesoscale. Application to the alkali-silica reaction. Comp. Mat. Sci., 46(4):1163–1177. (2009). [CrossRef] [Google Scholar]
  15. C. Larive, Apports Combin–es de l–Experimentation et de la Modélisation à la Comprehension del–Alcali-Réaction et de ses Effets Mécaniques, PhD thesis, Paris. (1998) [Google Scholar]
  16. J. Liaudat, I. Carol C. Lopez V. Saouma, ASR expansion in concrete under triaxial confinement, Cem. Con. Com. 86 (2018) [Google Scholar]
  17. A.B. Giorla, K.L. Scrivener, C.F. Dunant, Influence of visco-elasticity on the stress development induced by alkali–silica reaction, Cem. Concr. Res. 70 (2015) [CrossRef] [Google Scholar]
  18. S. Multon, F. Toutlemonde, Effect of applied stresses on alkali–silica reaction-induced expansions. Cem. Con. Res. 36 912–20. (2006) [CrossRef] [Google Scholar]
  19. S. Mohamad Aluad, Durability of concrete under combined action: Mechanical load and ASR, PhD thesis, Stellenbosch University, SA, (2016) [Google Scholar]
  20. Abaqus, Release 2016. Theory and User–s manuals. Dassault systems, USA, (2016) [Google Scholar]
  21. A.R. Ingraffea, Case studies of simulation of fracture in concrete dams. Eng. Frac. Mech., 35 (1990) [Google Scholar]
  22. V. Govevski E. Yildiz, Numerical analysis of aar affected structures with slot-cuts, DSC, Wiley (2017) [Google Scholar]
  23. Lee J, Fenves, LG. Plastic damage model for cyclic loading of concrete structures. J. Eng. Mech. ASCE: 124 (1998) [Google Scholar]
  24. Inst. of Struc. Eng., Structural effects of alkali-silica reaction, Technical guidance on the appraisal of existing structures. Technical report, Report of an ISE task group, (1992) [Google Scholar]
  25. Z. Bažant, B. H. Oh, Crack band theory for fracture of concrete. Mat. and Struc., 16:155–177, (1983) [Google Scholar]
  26. J. Pan, Y. Xu, F. Jin, C. Zhang, A unified approach for long term behaviour and seismic response of AARaffected concrete dams, Soil Dyn. Earth. Eng., 63: 193–202. (2014) [CrossRef] [Google Scholar]
  27. R.C. Sloan and T.J. Abraham, TVA cuts deep slot in dam ends cracking problems. Civ. Eng. 48, (1978). [Google Scholar]
  28. A. Sellier, E. Grimmal, S. Multon and E. Bourfarot, Swelling concrete in dams and hydraulics structures, DSC, Wiley, (2017) [CrossRef] [Google Scholar]
  29. Z.S, Mhalanga, Rehabilitation of the spillway upstream control facility and reshaping of the plunge pool, SANCOLD conf., Jburg, South Africa (2014). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.