Open Access
Issue
MATEC Web Conf.
Volume 199, 2018
International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2018)
Article Number 03006
Number of page(s) 9
Section Alkali Silica Reaction
DOI https://doi.org/10.1051/matecconf/201819903006
Published online 31 October 2018
  1. Van Aardt, J.H.P., Visser, S. (1997): Formation of hydrogarnets: Calcium hydroxide attack on clays and feldspars. Cement and Concrete Research. (7): 39–44 [CrossRef] [Google Scholar]
  2. Constantiner D, Diamond S (2003): Alkali release from feldspars into pore solutions. Cem. and Conc. Res, 33(4): 549–554 [CrossRef] [Google Scholar]
  3. Bérubé, M.A, Dorion, J.F., Rivest, M, (2000): Distribution of alkalis in concrete structures affected by ASR, contribution by aggregates A. In: Proc. 11th ICAAR Conference Proceedings: Québec City, Canada: 139–148 [Google Scholar]
  4. Bérubé, MA, Dorion J.F., Rivest M (2002): Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by ASR. Conference Proceedings 32(8):1215–1227 [Google Scholar]
  5. Wang, Y, Mo, L, Deng, M, Tang, M (2004): Thermodynamic analysis on decomposition of feldspar mineral under alkali condition. 12th ICAAR Conference Proceedings, Beijing, China: 211–220 [Google Scholar]
  6. Wang, H. y Gilliot, J.E. (1991), Mechanisms of alkali-silica reaction and the significate of calcium hydroxide. Cement & Concrete Research, 21(4): pp 647–654 [Google Scholar]
  7. Wang, Y., Deng M., Tang, M. (2008): Alkali release from aggregate and the effect on AAR expansion. Materials and Structures. (41):159–171 [CrossRef] [Google Scholar]
  8. Grattan-Bellew P.E., Beaudouin J.J. (1980): Effect of phlogopite mica on alkali-aggregate expansion in concrete. Cement and Concrete Research 10(6):789–797 [CrossRef] [Google Scholar]
  9. Shayan, A, (2004): Alkali-aggregate reaction and basalt aggregate. 12th ICAAR, Beijing, China: 1130–1135 [Google Scholar]
  10. Gillott, J.E., Rogers C.A. (1994): Alkaliaggregate reaction and internal release of alkalis. Mag. Concrete Research. 46(167):99–112 [CrossRef] [Google Scholar]
  11. Durand, B. (2000): A note about alkali contribution from aggregates in concrete affected by ASR. 11th ICAAR, Québec City, Canada: 169–177 [Google Scholar]
  12. Bérubé, M.A., Duchesnea, J., Doriona, J.F., Rivest, M. (2004): A reply to the discussion by Mingshu Tang of the paper “Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali-silica reactivity”, Cement and Concrete Research (34):903–904 [CrossRef] [Google Scholar]
  13. Mingshu, T (2004): A discussion of paper “Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali-silica reactivity” by M.-A. Berube, J. Duchesne, J.F. Dorion and M. Rivest. Cement and Concrete Research (34):901 [CrossRef] [Google Scholar]
  14. Constantiner, D., Diamond, S. (2003): Alkali release from feldspars into pore solutions. Cem. and Conc. Res. (33):549–554 [CrossRef] [Google Scholar]
  15. Bérubé, M.A., Duchesnea, J. Doriona., J.F. Rivest, M. (2002): Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali-silica reactivity. Cement and Concrete Research 32: 1215–1227 [CrossRef] [Google Scholar]
  16. Van Aardt JHP, Visser S (1977): Calcium hydroxide attack on feldspars and clays: possible relevance to cement-aggregate reactions. Cement and Concrete Research. 7(6): 643–648 [CrossRef] [Google Scholar]
  17. D. Stark, M.S. Bhatty, Alkali– silica reactivity: Effect of alkali in aggregate on expansion, Alkalis in Concrete, ASTM Spec. Tech. Publ., vol. 930, 1986, pp. 16–30. [Google Scholar]
  18. M. Kawamura, M. Koike, K. Nakano, Release of alkalies from reactive andesitic aggregates and fly ashes into pore solution in mortars, in: K. Okada, S. Nishibayashi, M. Kawamura (Eds.), Proceedings of the 8th International Conference on AAR, Society of Materials Science, Kyoto, 1989, pp. 271–278. [Google Scholar]
  19. LCPC (Laboratoire Central des Ponts et Chausse–es), Essai de granulat — de–termination des alcalins solubles dans l–eau de chaux, Me–thode d’essai no. 37, Paris, 1993. [Google Scholar]
  20. W. Yujiang, D. Min, T. Mingshu, (2008) Alkali release from aggregate and the effect on AAR Expansion, Materials and Structures 41:159–171 [CrossRef] [Google Scholar]
  21. E. Menéndez, N. Prendes, A. Gil, A.B. Marín, (2011) Evaluation of the potential alkali-silica reaction development of Spanish granitic rocks by lixiviation test. Workshop Predicting AAR: Developing a Practical & Reliable Performance Test. RILEM TC on Alkali-Aggregate Reactions in Concrte Structures, May, 2011 Reyjavik (Iceland) [Google Scholar]
  22. C. Shi, (2004) A discussion of the paper “Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali-silica reactivity” by M. -A. Berube, J. Duchesen., J. F. Dorion and M. Rivest, Cement and Concrete Research 34:895 [Google Scholar]
  23. M.A. Berubé, J. Duchesne, J.F. Dorion, M. Rivest, (2004), Reply to the discussion by C. Shi of the paper “Laboratory assessment of alkali contribution by aggregates to concrete and application to concrete structures affected by alkali–silica reactivity”, Cement and Concrete Research 34: 897–899 [CrossRef] [Google Scholar]
  24. D. Stark, Alkali–aggregate reactivity in the Rocky Mountain region, in: S. Diamond (Ed.), Proceedings of the 4th International Conference on AAR, Purdue, 1978, pp. 235–244 (Publ. No. CEMAT-1-78) [Google Scholar]
  25. Menéndez, E., García-Roves, R., Ruiz, S. 2016, Alkali release from aggregates: contribution on ASR, Construction Materials, Volume 169, Issue CM4, pp. 206–214 [CrossRef] [Google Scholar]
  26. Gil, A., Cajete, J. (1991): Study on The Interaction Aggregate-paste in the Concrete at the San Esteban Dam. Dix-septième Congres des Grands Barrages. Vienne, Commission Internationale des Grands Barrages: 65–88 [Google Scholar]
  27. Cajete, J., Delgado, C. (1989) : Regeneracióne impermeabilización del hormigón de la Presa de San Esteban, Orense (España). Conferencia sobre Potenciación y Remodelación de Plantas Hidroeléctricas. Zurich: 7–15 [Google Scholar]
  28. Menéndez, E., Prendes, N., Márquez, C., Aldea, B. (2011), Analysis of the concrete of San Esteban dam. HOREX Project. Inform 19.346-F6 [Google Scholar]
  29. Standard Descriptive Nomenclature for Constituents of natural Mineral Agrgregates (1986). ASTM C 294-86. pp. 167–173 [Google Scholar]
  30. Reacción Álcali-Árido en Presas de Hormigón. (1994). Ideas Generales y Recomendaciones. Monografías 17. Colegio de Ingenieros de Caminos, Canales y Puertos. Comité Español de Grandes Presas. pp. 112 [Google Scholar]
  31. Mather, C. (1966). Petrographic examination. Hardened Concrete. Symposium on Significance of Properties of Concrete and Concrete Making Materials. pp. 125–143 [Google Scholar]
  32. Mapa Geológico de España E. 1:50.000 y Memoria explicativa. Hoja Nogueira de Ramuin. (1974) Segunda serie. 1a Ed. IGME. D.L. 5.6121974. pp 37 [Google Scholar]
  33. Salinas, J.L. (1983). Recomendaciones para una normalización del Estudio Petrológiuco de los Áridos. Documentos del laboratorio de Carreteras Vicente Escario. pp 105–124 [Google Scholar]
  34. Menéndez, E., García-Rovés, R., Aldea, B., Ruíz, S., 2016c, Alkali release of aggregates. Effectiveness of different solutions and conditions of test, Proceedings of the 13th ICAAR. Eds., Sao Paulo, Brasil [Google Scholar]
  35. Menéndez, E., García-Rovés, R., Prendes, N., 2015b, Metodología avanzada de evaluación petrográfica de áridos para predecir su potencial reactividad frente a los álcalis del hormigón, Proceedings del IV Congreso Nacional de Áridos, Madrid 2015 [Google Scholar]
  36. RILEM Recommended Test Method AAR-1: Detection of potential alkali-reactivity of aggregates Petrographic method, Materials and Structures, Vol. 36, August-September 2003, pp480–496 [Google Scholar]
  37. ASTM C1260 (2007). Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method) [Google Scholar]
  38. ASTM C227 (2003). Standard Test Method for Potential Alkali Reactivity of Cement Aggregate Combinations (Mortar Bar Method) [Google Scholar]
  39. E. Menéndez, N. Prendes, C. Márquez, B. Aldea, (2012), Evaluation of Granitic Aggregates Behavior in Relation with the Alkaline Extraction and Compositional Change in their Phases, In Proceedings of the 12th International Conference on Alkali-Aggregate Reactivity in Concrete, Drimalas, T., Ideker J.H. and Fournier, B. Eds., Austin, Texas, USA, 2012, 10 pp. [Google Scholar]
  40. Longet, P. Longuet, L Burglen, Zelwer, A. (1973): The Liquid Phase of Hydrated Cement. Mat. Const. 676:35–41 [Google Scholar]
  41. Bérubé, M.A., Frenette, J., Rivest, M., Vezina, D. (2002). Measurement of the alkali content of concrete using hot-water extraction. Cement, concrete and Aggregates, CCAGDP, Vol. 24, N°1, pp 28–36. [CrossRef] [Google Scholar]
  42. Menéndez, E., Fournier, B., Santos, A., Justnes, H. Draft AAR-8: Determination of Alkalis Releasable by Aggregates in Concrete. (2015). RILEM TC 219-ACS [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.