Open Access
Issue
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
Article Number 03020
Number of page(s) 4
Section Computer Science
DOI https://doi.org/10.1051/matecconf/201819703020
Published online 12 September 2018
  1. S. Dodge et al., “The environmental-data automated track annotation (Env-DATA) system: linking animal tracks with environmental data.,” Mov. Ecol., vol. 1, no. 1, p. 3, (2013) [CrossRef] [Google Scholar]
  2. A. H. Alvarado, T. L. Fuller, and T. B. Smith, “Integrative tracking methods elucidate the evolutionary dynamics of a migratory divide,” Ecol. Evol., vol. 4, no. 17, pp. 3456-3469, (2014) [CrossRef] [Google Scholar]
  3. T. Burghardt, J. Ćalić, and B. T. Thomas, “Tracking Animals In Wildlife Videos Using Face Detection.” [Google Scholar]
  4. J. Shao, Y. Zhou, J. Li, X. Wang, Z. Luo, and B. Yan, “Spatial Distribution Analysis of Wild Bird Migration in Qinghai Lake Based on Maximum Entropy Modeling,” 2011 Second Int. Conf. Netw. Distrib. Comput., no. October 2011, pp. 140-144, (2011) [CrossRef] [Google Scholar]
  5. Z. XU and X. E. Cheng, “Zebrafish tracking using convolutional neural networks,” Sci. Rep., vol. 7, no. January, p. 42815, (2017) [CrossRef] [Google Scholar]
  6. M. Schwager, D. M. Anderson, Z. Butler, and D. Rus, “Robust classification of animal tracking data,” Comput. Electron. Agric., vol. 56, no. 1, pp. 46-59, (2007) [CrossRef] [Google Scholar]
  7. X. Wang, J. Liang, and F. Guo, “Feature extraction algorithm based on dual-scale decomposition and local binary descriptors for plant leaf recognition,” Digit. Signal Process., vol. 34, pp. 101-107, (Nov. 2014) [CrossRef] [Google Scholar]
  8. G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural networks.,” Science, vol. 313, no. 5786, pp. 504-7, (Jul. 2006) [NASA ADS] [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  9. E. M. Imah, F. Al Afif, M. Ivan Fanany, W. Jatmiko, and T. Basaruddin, “A comparative study on Daubechies Wavelet Transformation, Kernel PCA and PCA as feature extractors for arrhythmia detection using SVM,” in IEEE Region 10 Annual International Conference, Proceedings/TENCON, pp. 5-9. (2011) [Google Scholar]
  10. J. Cheng, B. Xie, C. Lin, and L. Ji, “A comparative study in birds: call-type-independent species and individual recognition using four machine-learning methods and two acoustic features,” Bioacoustics, vol. 21, no. 2, pp. 157-171, (Jun. 2012) [CrossRef] [Google Scholar]
  11. A. Iosifidis, A. Tefas, and I. Pitas, “Approximate kernel extreme learning machine for large scale data classification,” Neurocomputing, (2016) [Google Scholar]
  12. E. M. Imah, W. Jatmiko, and T. Basaruddin, “Electrocardiogram for biometrics by using adaptive multilayer generalized learning vector quantization (AMGLVQ): Integrating feature extraction and classification,” Int. J. Smart Sens. Intell. Syst., vol. 6, no. 5, pp. 1891-1917, (2013) [Google Scholar]
  13. M. Faijul Amin and K. Murase, “Single-layered complex-valued neural network for real-valued classification problems,” Neurocomputing, vol. 72, no. 4-6, pp. 945-955, (2009) [CrossRef] [Google Scholar]
  14. I. S. Baruch, V. A. Quintana, and E. P. Reynaud, “Complex-valued neural network topology and learning applied for identification and control of nonlinear systems,” Neurocomputing, vol. 233, no. December 2015, pp. 104-115, (2017) [CrossRef] [Google Scholar]
  15. M. Kobayashi, “Singularities of Three-Layered Complex-Valued Neural Networks With Split Activation Function,” IEEE Trans. Neural Networks Learn. Syst., pp. 1-8, (2017) [Google Scholar]
  16. Y. S. Lee, C. Y. Wang, S. F. Wang, J. C. Wang, and C. H. Wu, “Fully complex deep neural network for phase-incorporating monaural source separation,” ICASSP, IEEE Int. Conf. Acoust. Speech Signal Process.-Proc., pp. 281-285, (2017) [Google Scholar]
  17. R. Schneider and F. Kr, “Daubechies Wavelets and Interpolating Scaling Functions and Application on PDEs,” pp. 1-44, (2007) [Google Scholar]
  18. J. Du, C.-M. Zhai, and Q.-P. Wang, “Recognition of plant leaf image based on fractal dimension features,” Neurocomputing, vol. 116, pp. 150-156, Sep. (2013) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.