Open Access
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
Article Number 03015
Number of page(s) 4
Section Computer Science
Published online 12 September 2018
  1. M. A. Ramdhani, H. Aulawi, A. Ikhwana, and Y. Mauluddin, “Model of green technology adaptation in small and medium-sized tannery industry,” J. Eng. Appl. Sci., vol. 12, no. 4, pp. 954-962, (2017) [Google Scholar]
  2. C. Alias, F. E. A. Olalla, A. Potechin, and B. Noche, “Comparing methods of technology benefit assessment regarding their applicability to transportation and logistics,” in 2018 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE), pp. 21-26. (2018) [CrossRef] [Google Scholar]
  3. W. B. Zulfikar and N. Lukman, “Perbandingan Naive Bayes Classifier Dengan Nearest Neighbor Untuk Identifikasi Penyakit Mata,” J. Online Inform., vol. 1, no. 2, pp. 82-86, Dec. (2016) [Google Scholar]
  4. T. Hastono, A. J. Santoso, and Pranowo, “Honey yield prediction using Tsukamoto fuzzy inference system,” in 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pp. 1-6. (2017) [Google Scholar]
  5. T. S. Putri and F. Ramdani, “Reliability testing using hybrid exploratory basis of tour and fuzzy Inference System Tsukamoto,” in 2017 International Conference on Sustainable Information Engineering and Technology (SIET), pp. 176-183. (2017) [CrossRef] [Google Scholar]
  6. D. M. N. Fajri, W. F. Mahmudy, and Y. P. Anggodo, “Optimization of FIS Tsukamoto using particle swarm optimization for dental disease identification,” in 2017 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 261-268. (2017) [CrossRef] [Google Scholar]
  7. I. Wahyuni and F. Utaminingrum, “Error numerical analysis for result of rainfall prediction between Tsukamoto FIS and hybrid Tsukamoto FIS with GA,” in 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 365-372. (2016) [CrossRef] [Google Scholar]
  8. R. Shoureshi and Zhi Hu, “Tsukamoto-type neural fuzzy inference network,” in Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334), pp. 2463-2467 vol. 4. (2000) [Google Scholar]
  9. N. I. Kurniati, H. Mubarok, and A. Reinaldi, “Rancang Bangun Sistem Pakar Diagnosa tingkat Depresi Pada Mahasiswa Tingkat Akhir Menggunakan Metode Fuzzy Tsukamoto(Studi Kasus: Universitas Siliwangi),” J. Online Inform., vol. 2, no. 1, p. 49, Jul. (2017) [CrossRef] [Google Scholar]
  10. B. S. Ardika, A. H. Setianingrum, and N. Hakiem, “Funding eligibility decision support system using fuzzy logic Tsukamoto: (Case: BMT XYZ),” in 2017 Second International Conference on Informatics and Computing (ICIC), pp. 1-7. (2017) [Google Scholar]
  11. V. R. R. Agustin and W. H. Irawan, “Aplikasi Pengambilan Keputusan dengan Metode Tsukamoto pada Penentuan Tingkat Kepuasan pelanggan,” CAUCHY, vol. 4, no. 1, p. 10, Nov. (2015) [CrossRef] [Google Scholar]
  12. H. Istiqlaliyah and R. A. Ramadhani, “Sistem Kontrol Frekuensi Putar Motor Pada Cooling Pad Menggunakan Metode Fuzzy Tsukamoto,” Simetris J. Tek. Mesin, Elektro dan Ilmu Komput., vol. 8, no. 2, p. 755, Nov. (2017) [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.