Open Access
Issue
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
Article Number 03014
Number of page(s) 6
Section Computer Science
DOI https://doi.org/10.1051/matecconf/201819703014
Published online 12 September 2018
  1. L. Held and R. Vollnhals, “Dynamic rating of European football teams,” IMA J. Manag. Math., vol. 16, no. 2, pp. 121-130, Jan. (2005) [CrossRef] [Google Scholar]
  2. V. Manasis, V. Avgerinou, I. Ntzoufras, and J. J. Reade, “Quantification of competitive balance in European football: development of specially designed indices,” IMA J. Manag. Math., vol. 24, no. 3, pp. 363-375, Jul. (2013) [CrossRef] [Google Scholar]
  3. D. F. Pacheco, D. Pinheiro, F. B. de Lima-Neto, E. Ribeiro, and R. Menezes, “Characterization of Football Supporters from Twitter Conversations,” in 2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 169-176. (2016) [CrossRef] [Google Scholar]
  4. D. Prasetio and D. Harlili, “Predicting football match results with logistic regression,” in 2016 International Conference On Advanced Informatics: Concepts, Theory And Application (ICAICTA), pp. 1-5. (2016) [Google Scholar]
  5. M. A. Ikram, M. D. Alshehri, and F. K. Hussain, “Architecture of an IoT-based system for football supervision (IoT Football),” in 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), pp. 69-74. (2015) [CrossRef] [Google Scholar]
  6. L. Tianbiao and H. Andreas, “Apriori-based diagnostical analysis of passings in the football game,” in 2016 IEEE International Conference on Big Data Analysis (ICBDA), pp. 1-4. (2016) [Google Scholar]
  7. W. Puchun, “The Application of Data Mining Algorithm Based on Association Rules in the Analysis of Football Tactics,” in 2016 International Conference on Robots & Intelligent System (ICRIS), pp. 418-421. (2016) [CrossRef] [Google Scholar]
  8. M. A. Ramdhani, H. Aulawi, A. Ikhwana, and Y. Mauluddin, “Model of green technology adaptation in small and medium-sized tannery industry,” J. Eng. Appl. Sci., vol. 12, no. 4, pp. 954-962, (2017) [Google Scholar]
  9. A. Pamoragung, K. Suryadi, and M. A. Ramdhani, “Enhancing the implementation of e-Government in indonesia through the high-quality of virtual community and knowledge portal,” in Proceedings of the European Conference on e-Government, ECEG, pp. 341-348. (2006) [Google Scholar]
  10. H. Aulawi, M. A. Ramdhani, C. Slamet, H. Ainissyifa, and W. Darmalaksana, “Functional Need Analysis of Knowledge Portal Design in Higher Education Institution,” Int. Soft Comput., vol. 12, no. 2, pp. 132-141, (2017) [Google Scholar]
  11. C. Slamet, A. Rahman, A. Sutedi, W. Darmalaksana, M. A. Ramdhani, and D. S. Maylawati, “Social Media-Based Identifier for Natural Disaster,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 012039, (2018) [CrossRef] [Google Scholar]
  12. W. B. Zulfikar, Jumadi, P. K. Prasetyo, and M. A. Ramdhani, “Implementation of Mamdani Fuzzy Method in Employee Promotion System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 012147, Jan. (2018) [CrossRef] [Google Scholar]
  13. C. Slamet, R. Andrian, D. S. Maylawati, W. Darmalaksana, and M. A. Ramdhani, “Web Scraping and Naïve Bayes Classification for Job Search Engine,” vol. 288, no. 1, pp. 1-7, (2018) [Google Scholar]
  14. W. B. Zulfikar, M. Irfan, C. N. Alam, and M. Indra, “The comparation of text mining with Naive Bayes classifier, nearest neighbor, and decision tree to detect Indonesian swear words on Twitter,” in 2017 5th International Conference on Cyber and IT Service Management, CITSM 2017, (2017) [Google Scholar]
  15. Y. A. Gerhana, W. B. Zulfikar, A. H. Ramdani, and M. A. Ramdhani, “Implementation of Nearest Neighbor using HSV to Identify Skin Disease,” in IOP Conference Series: Materials Science and Engineering, vol. 288, no. 1. (2018) [Google Scholar]
  16. W. B. Zulfikar, A. Wahana, W. Uriawan, and N. Lukman, “Implementation of association rules with apriori algorithm for increasing the quality of promotion,” in Proceedings of 2016 4th International Conference on Cyber and IT Service Management, CITSM 2016, (2016) [Google Scholar]
  17. A. Rahman, C. Slamet, W. Darmalaksana, Y. A. Gerhana, and M. A. Ramdhani, “Expert System for Deciding a Solution of Mechanical Failure in a Car using Case-based Reasoning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 012011, (2018) [CrossRef] [Google Scholar]
  18. C. Slamet, A. Rahman, M. A. Ramdhani, and W. Darmalaksana, “Clustering the Verses of the Holy Qur’an Using K-Means Algorithm,” Asian J. Inf. Technol., vol. 15, no. 24, pp. 5159-5162, (2016) [Google Scholar]
  19. D. S. Maylawati, M. A. Ramdhani, W. B. Zulfikar, I. Taufik, and W. Darmalaksana, “Expert system for predicting the early pregnancy with disorders using artificial neural network,” in 2017 5th International Conference on Cyber and IT Service Management, CITSM 2017, (2017) [Google Scholar]
  20. D. S. Maylawati, M. A. Ramdhani, W. B. Zulfikar, I. Taufik, and W. Darmalaksana, “Expert system for predicting the early pregnancy with disorders using artificial neural network,” in 2017 5th International Conference on Cyber and IT Service Management (CITSM), pp. 1-6. (2017) [Google Scholar]
  21. W. B. Zulfikar, Jumadi, P. K. Prasetyo, and M. A. Ramdhani, “Implementation of Mamdani Fuzzy Method in Employee Promotion System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 012147, Jan. (2018) [CrossRef] [Google Scholar]
  22. D. S. A. Maylawati, M. A. Ramdhani, A. Rahman, and W. Darmalaksana, “Incremental technique with set of frequent word item sets for mining large Indonesian text data,” 2017 5th Int. Conf. Cyber IT Serv. Manag. CITSM 2017, pp. 1-6, (2017) [Google Scholar]
  23. W. B. Zulfikar and N. Lukman, “Perbandingan Naive Bayes Classifier Dengan Nearest Neighbor Untuk Identifikasi Penyakit Mata,” J. Online Inform., vol. 1, no. 2, pp. 82-86, Dec. (2016) [Google Scholar]
  24. A. Taofik, N. Ismail, Y. A. Gerhana, K. Komarujaman, and M. A. Ramdhani, “Design of Smart System to Detect Ripeness of Tomato and Chili with New Approach in Data Acquisition,” in IOP Conference Series: Materials Science and Engineering, vol. 288, no. 1, p. 012018. (2018) [CrossRef] [Google Scholar]
  25. D. Setiawati, I. Taufik, Jumadi, and W. Z. Budiawan, “Klasifikasi Terjemahan Ayat Al-Quran Tentang Ilmu Sains Menggunakan Algoritma Decision Tree Berbasis Mobile,” J. Online Inform., vol. 1, no. 1, pp. 24-27, (2016) [CrossRef] [Google Scholar]
  26. Y. Zhang, H. Li, and X. Wang, “Electricity market decision support system for power plants,” in 2017 9th International Conference on Modelling, Identification and Control (ICMIC), pp. 935-939. (2017) [CrossRef] [Google Scholar]
  27. S. A. Eroshenko and A. I. Khalyasmaa, “Intelligent model of decision support system of distributed generation integration,” in 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 79-82. (2017) [CrossRef] [Google Scholar]
  28. S. Kusumadewi and S. Hartatik, Neuro fuzzy: Integrasi Sistem Fuzzy & Jaringan Syaraf. (Yogyakarta: Graha Ilmu, 2006) [Google Scholar]
  29. S. Kusumadewi, Artificial Intelligence, 1st ed. Yogyakarta: Graha Ilmu, 2003. [Google Scholar]
  30. S. Kusumadewi and H. Purnomo, Aplikasi Logika Fuzzy untuk Pendukung Keputusan. (Yogyakarta: Graha Ilmu, 2004) [Google Scholar]
  31. I. Wahyuni, W. F. Mahmudy, and A. Iriany, “Rainfall prediction in Tengger region Indonesia using Tsukamoto fuzzy inference system,” in 2016 1st International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pp. 130-135. (2016) [CrossRef] [Google Scholar]
  32. B. S. Ardika, A. H. Setianingrum, and N. Hakiem, “Funding eligibility decision support system using fuzzy logic Tsukamoto: (Case: BMT XYZ),” in 2017 Second International Conference on Informatics and Computing (ICIC), pp. 1-7. (2017) [Google Scholar]
  33. G. E. Pribadi, U. Syaripudin, and W. Uriawan, “Aplikasi Pembelajaran Bahasa Sunda Dengan Implementasi Algoritma Linear Congruential Generator Dan Fuzzy Berbasis Android,” JOIN (Jurnal Online Inform., vol. 1, no. 1, pp. 34-42, (2016) [CrossRef] [Google Scholar]
  34. I. Septiana, M. Irfan, and A. R. Atmadja, “Sistem Pendukung Keputusan Penentu Dosen Penguji Dan Pembimbing Tugas Akhir Menggunakan Fuzzy Multiple Attribute Decision Makingdengan Simple Additive Weighting (Studi Kasus: Jurusan Teknik Informatika Uin Sgd Bandung),” J. Online Inform., vol. 1, no. 1, pp. 43-50, (2016) [CrossRef] [Google Scholar]
  35. I. Haditama, C. Slamet, and D. Fauzy, “Implementasi Algoritma Fisher-Yates Dan Fuzzy Tsukamoto Dalam Game Kuis Tebak Nada Sunda Berbasis Android,” J. Online Inform., vol. 1, no. 1, pp. 51-58, Jun. (2016) [CrossRef] [Google Scholar]
  36. I. Wahyuni and F. Utaminingrum, “Error numerical analysis for result of rainfall prediction between Tsukamoto FIS and hybrid Tsukamoto FIS with GA,” in 2016 International Conference on Advanced Computer Science and Information Systems (ICACSIS), pp. 365-372. (2016) [CrossRef] [Google Scholar]
  37. T. Hastono, A. J. Santoso, and Pranowo, “Honey yield prediction using Tsukamoto fuzzy inference system,” in 2017 4th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), pp. 1-6. (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.