Open Access
MATEC Web Conf.
Volume 197, 2018
The 3rd Annual Applied Science and Engineering Conference (AASEC 2018)
Article Number 03001
Number of page(s) 7
Section Computer Science
Published online 12 September 2018
  1. M. Savvides, J. Heo, and S. W. Park, “Introduction to Face Recognition,” in Handbook of Biometrics, A. K. Jain, P. Flynn, and A. A. Ross, Eds. pp. 44-45. (USA: Springer, 2008) [Google Scholar]
  2. H. Simaremare and A. Kurniawan, “Perbandingan Akurasi Pengenalan Wajah Menggunakan Metode LBPH dan Eigenface dalam Mengenali Tiga Wajah Sekaligus secara Real-Time,” J. Sains, Teknol. dan Ind., vol. 14, no. 1, pp. 66-71, (2016) [Google Scholar]
  3. R. Primartha, “Penerapan Enkripsi dan Dekripsi File menggunakan Algoritma Advanced Encryption Standard (AES),” J. Res. Comput. Sci. Appl., vol. 2, no. 1, pp. 13-18, (2013) [Google Scholar]
  4. L. W. Alexander, S. R. Sentinuwo, A. M. Sambul, T. Informatika, U. Sam, and R. Manado, “Implementasi Algoritma Pengenalan Wajah Untuk Mendeteksi Visual Hacking,” E-Journal Tek. Inform., vol. 11, no. 1, (2017) [Google Scholar]
  5. F. A. Hannan, Z. Khalid, and A. Rafiq, “Comparative Analysis of Face Recognition Methodologies and Techniques,” NFC-IEFR J. Eng. Sci. Res., vol. 4, no. 1, pp. 37-44, (2016) [Google Scholar]
  6. P. Jaturawat and M. Phankokkruad, “An evaluation of face recognition algorithms and accuracy based on video in unconstrained factors,” in Proceedings-6th IEEE International Conference on Control System, Computing and Engineering, pp. 240-244. (ICCSCE 2016, 2017) [Google Scholar]
  7. D. G. Wahana, D. Dr. Ir. Bambang Hidayat, and M. Suci Aulia ST, “Implementasi Dan Analisis Sistem Pengenalan Wajah Dalam Ruangan Pada Video Menggunakan Metode LNMF DAN NMFsc,” e-Proceeding Eng., vol. 2, no. 1, pp. 389-395, (2015) [Google Scholar]
  8. D. S. Maylawati, W. Darmalaksana, and M. A. Ramdhani, “Systematic Design of Expert System Using Unified Modelling Language,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 12047, (2018) [CrossRef] [Google Scholar]
  9. M. A. Ramdhani, Metodologi Penelitian untuk Riset Teknologi Informasi. Bandung: UIN Sunan Gunung Djati Bandung, (2013) [Google Scholar]
  10. C. Slamet, A. Rahman, A. Sutedi, W. Darmalaksana, M. A. Ramdhani, and D. S. Maylawati, “Social Media-Based Identifier for Natural Disaster,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 12039, (2018) [CrossRef] [Google Scholar]
  11. C. Slamet, R. Andrian, D. S. Maylawati, W. Darmalaksana, and M. A. Ramdhani, “Web Scraping and Naïve Bayes Classification for Job Search Engine,” vol. 288, no. 1, pp. 1-7, (2018) [Google Scholar]
  12. Y. A. Gerhana, W. B. Zulfikar, A. H. Ramdani, and M. A. Ramdhani, “Implementation of Nearest Neighbor using HSV to Identify Skin Disease,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 012153 1234567890 Implementation, (2018) [CrossRef] [Google Scholar]
  13. A. Rahman, C. Slamet, W. Darmalaksana, Y. A. Gerhana, and M. A. Ramdhani, “Expert System for Deciding a Solution of Mechanical Failure in a Car using Case-based Reasoning,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 12011, (2018) [CrossRef] [Google Scholar]
  14. C. Slamet, A. Rahman, M. A. Ramdhani, and W. Darmalaksana, “Clustering the Verses of the Holy Qur’an Using K-Means Algorithm,” Asian J. Inf. Technol., vol. 15, no. 24, pp. 5159-5162, (2016) [Google Scholar]
  15. D. S. Maylawati, M. A. Ramdhani, W. B. Zulfikar, I. Taufik, and W. Darmalaksana, “Expert system for predicting the early pregnancy with disorders using artificial neural network,” 2017 5th Int. Conf. Cyber IT Serv. Manag. CITSM 2017, (2017) [Google Scholar]
  16. W. B. Zulfikar, Jumadi, P. K. Prasetyo, and M. A. Ramdhani, “Implementation of Mamdani Fuzzy Method in Employee Promotion System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 288, no. 1, p. 12147, (2018) [CrossRef] [Google Scholar]
  17. D. S. Maylawati, M. A. Ramdhani, A. Rahman, and W. Darmalaksana, “Incremental technique with set of frequent word item sets for mining large Indonesian text data,” 2017 5th Int. Conf. Cyber IT Serv. Manag. CITSM 2017, pp. 1-6, (2017) [Google Scholar]
  18. A. Taofik, N. Ismail, Y. A. Gerhana, K. Komarujaman, and M. A. Ramdhani, “Design of Smart System to Detect Ripeness of Tomato and Chili with New Approach in Data Acquisition,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 288, no. 1, p. 1 (2018) [Google Scholar]
  19. F. Brilian, A. Fatchul Huda, I. Taufik, “Sistem Pengenalan Wajah Dengan Menggunakan Metode Linear Discriminant Analysis (LDA),” Konferensi Nasional Sistem Informasi, 2355-1941, (2014) [Google Scholar]
  20. N. Syafitri and Adri, “Prototype Pendeteksi Jumlah Orang Dalam Ruangan,” IT J. Res. Dev., vol. 1, no. 2, pp. 40-43, (2017) [Google Scholar]
  21. T. D. OpenCV, “Face Recognition with OpenCV,” OpenCV documentation, (2016) [Google Scholar]
  22. J. Rekursif, A. R. Syakhala, D. Puspitaningrum, and E. P. Purwandari, “Perbandingan Metode Principal Component Analysis ( PCA ) Dengan Metode Hidden Markov Model ( HMM ) Dalam Pengenalan Identitas,” vol. 3, no. 2, pp. 70-71, (2015) [Google Scholar]
  23. I. Kusmana, “Penggabungan Fitur Local Binary Patterns Untuk Identifikasi Citra Tumbuhan Obat,” Inst. Teknol. Bogor, p. 2, (2011) [Google Scholar]
  24. T. Lindahl, “Study of Local Binary Patterns,” Sci. Technol., p. 3, (2007) [Google Scholar]
  25. A. Pamungkas, “Pengenalan Pola Pemrograman Matlab,” (2017) [Google Scholar]
  26. T. Ridwan and M. I. NS, “Kalkulator Visual Pada Tulisan Tangan Memanfaatkan Pengenalan Pola Berbasis Aturan Dengan Levenshtein Distance untuk Menghasilkan Informasi Ucapan,” JOIN (Jurnal Online Inform., vol. 1, no. 2, pp. 107-110, (2016) [Google Scholar]
  27. S. R. Wurdianarto, “Perbandingan Euclidean Distance Dengan Canberra Distance Pada Face Recognition,” Techo.COM, vol. 13, no. 1, pp. 34-35, (2014) [Google Scholar]
  28. OpenCV, “Histograms-OpenCV 2,”, (2016) [Google Scholar]
  29. D. Putra, “Perbandingan Biometrika,” in Sistem Biometrika, C. W. Hermawan, Ed. pp. 30-33. (Yogyakarta: ANDI, 2009) [Google Scholar]
  30. S. Rahmawati, I. Taufik, and G. Sandi, “(Advanced Encryption Standard) 256 bit dan Kompresi Menggunakan Algoritma Huffman Pada,” pp. 1-9, (2017) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.