Open Access
Issue
MATEC Web Conf.
Volume 195, 2018
The 4th International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE 2018)
Article Number 03010
Number of page(s) 7
Section Geotechnical Engineering
DOI https://doi.org/10.1051/matecconf/201819503010
Published online 22 August 2018
  1. E.J. Yoder, M.W. Witczak, Principles of Pavement Design, J Wiley and Sons Inc, second edition (1975) [CrossRef] [Google Scholar]
  2. M.P. O’Reilly, S.F. Brown, Cyclic loading of Soils: from theory to design, Blackie and Sons, Ltd. London (1991) [Google Scholar]
  3. B.T. Nguyen, A. Mohajerani, Resilient Modulus of Some Victorian Fine-Grained Soils at OMC, Wet of OMC, and Soaked Conditions, J. Aust. Geomech. Society, 49(2), 73-84 (2014) [Google Scholar]
  4. R. Ji, N. Siddiki, T. Nantung, D. Kim, Evaluation of Resilient Modulus of Subgrade and Base Materials in Indiana and Its Implementation in MEPDG, The Scientific World Journal, Vol.2014 (2014) [Google Scholar]
  5. G. Baladi, T. Dawson, C. Sessions, Pavement Subgrade MR Design Values for Michigan’s Seasonal Changes, Report No. RC-1531, Technical Report, Michigan Department of Transportation (2009) [Google Scholar]
  6. M. Zaman, N. Khoury, Effect of Soil Suction and Moisture on Resilient Modulus of Subgrade Soils in Oklahoma (No. ORA 125-6662) (2007) [Google Scholar]
  7. A. Maher, T. Bennert, N. Gucunski, W.J. Papp Jr., Resilient Modulus Properties of New Jersey Subgrade Soils (No. FHWA NJ 2000-01,) (2000) [Google Scholar]
  8. P.R. Fleming, C. Rogers, M.W. Frost, A. Dawson, Subgrade Equilibrium Water Content and Resilient Modulus for UK Clays (1998). [Google Scholar]
  9. K.P. George, Prediction of Resilient Modulus from Soil Index Properties, Final report, No. FHWA/MS-DOT-RD-04-172, Missisippi Department of Transportation (2004) [Google Scholar]
  10. S. Buchanan, Resilient Modulus: What, Why, and How, Vulcan Materials Company, 8(31), 07 (2007). [Google Scholar]
  11. P. Hornych, A. El Abd, Selection and evaluation of models for prediction of permanent deformations of unbound granular materials in road pavements. Work Package, 5 (2004). [Google Scholar]
  12. F. Lekarp U. Isacsson, A. Dawson, State of the art. II: Permanent strain response of unbound aggregates, Journal of Transportation Engineering, 126(1), 76-83 (2000b) [Google Scholar]
  13. P. Davich, J.F. Labuz, B. Guzina B, A. Drescher, Small strain and resilient modulus testing of granular soils, Technical report, No. 2004-39, Minnesota Department of Transportation (2004) [Google Scholar]
  14. Y.H. Huang, Pavement Analysis and Design, by Prentice-Hall, Inc., New Jersey (1993) [Google Scholar]
  15. G.Y. Yesuf, Influence of Subsoil Conditionson the Design and Performance of Flexible Pavements, Thesis, Norwegian University of Science and Technology (2014) [Google Scholar]
  16. A.J.L.M. Siang, D.C. Wijeyesekera, L.S. Mei, A. Zainorabidin, Innovative Laboratory Assessment of the Resilient Behaviour of Materials (Rigid, Elastic and Particulates), Procedia Engineering, 53, 156-166 (2013) [CrossRef] [Google Scholar]
  17. A.M.A. Guerrero, Effects of the Soil Properties on The Maximum Dry Density Obtained from The Standard Proctor Test, Thesis, Department of Civil and engineering, University of Central Florida Orlando, Florida (2004) [Google Scholar]
  18. X. Kang, G.C. Kang, K.T. Chang, L. Ge, Chemically Stabilized Soft Clays for Road-Base Construction, J. of Materials in Civil Engineering, 27(7) (2014) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.