Open Access
MATEC Web Conf.
Volume 195, 2018
The 4th International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE 2018)
Article Number 01019
Number of page(s) 9
Section Construction Materials
Published online 22 August 2018
  1. B. A. Wisena, A. Daryanto, B. Arifin, R. Oktaviani. Sustainable development strategy and the competitiveness of Indonesian palm oil industry. Int. J. Managerial Studies Res, 2, 10, (2014), pp. 102-115. [Google Scholar]
  2. N. F. Ishak, A. L. Ahmad, S. Ismail. Feasibility of anaerobic co-composting empty fruit bunch with activated sludge from palm oil mill waste for soil conditioner. Journal of Physical Science, 25, 1, (2014), pp. 77-92. [Google Scholar]
  3. I. A. Udoetok. Characterization of ash made from oil palm empty fruit bunches (OEFB). International Journal of Environmental Sciences, 3, 1, (2012). [Google Scholar]
  4. F. E. Ekpo, E. N. Okey, M. E. Asuquo. Effect of oil palm empty fruit bunches (OPEFB) amendments in crude oil polluted soil on germination and growth performance of white mangrove species (Lagunculariaa racemosa). European Environmental Sciences and Ecology Journal, 1, 1, (2014). [Google Scholar]
  5. M. R. Gidde, A. P. Jivani. Waste to wealth-potential of rice husk in India. Proceedings of the International Conferences of Cleaner Technologies and Environmental Management PEC, Pondicherry, India. January 4-6, (2007). pp. 586-590. [Google Scholar]
  6. I.A.W. Tan, A.L. Ahmad, B.H. Hameed. Preparation of activated carbon from coconut husk: Optimization study on removal of 2,4,6-trichlorophenol using response surface methodology. Journal of Hazardous Materials 153, (2008) pp. 709-717. Elsevier. [CrossRef] [Google Scholar]
  7. S. Nandan, Bijoy, PK Abdul Azis. Pollution indicators of coconut husk retting areas in the Kayals of Kerala. International journal of environmental studies, 47, 1, (1995): pp. 19-25. [CrossRef] [Google Scholar]
  8. B. Leena, S. Viveka. Effect of coconut husk retting on three backwater regions along the southwest coast India. Terrestrial and Aquatic Environmental Toxicology. (2009) pp. 62-64. Global Science Books. [Google Scholar]
  9. M. V. Maduwar, R. V. Ralegaonkar, S. A. Mandavgane. Application of agro-waste for sustainable construction materials: A review. construction and building materials, 38, (2012) pp. 872-878. [CrossRef] [Google Scholar]
  10. I. Mazov, B. Khaydarov, D. Suvorov, T. Yudintseva, D. Kuznetsov, A. Yudin. Cement-free binders for radioactive waste produced from blast-furnace slag using vortex layer activation technology. MATEC Web of Conferences 96, 00011, (2017). doi: 10.1051/matecconf/20179600011. EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  11. S. D. Halim, E. Rainer, C. Ryantonius, B. Panandito, D. Wardoyo, M. R. Fahlevy, I. S. Darma. The use of hazardous sludge solidification and green-lipped mussel shells in cementitious material: a case study of NGCC power plant of priok. MATEC Web of Conferences 147, 01008, (2018). EDP Sciences. [CrossRef] [EDP Sciences] [Google Scholar]
  12. O. Gencel, C. Ozel, F. Koksal, E. Erdogmus, G. Martínez-Barrera, W. Brostow. Properties of concrete paving blocks made with waste marble. Journal of Cleaner Production 21, (2012), pp. 62-70. Elsevier. [CrossRef] [Google Scholar]
  13. S. E. Wallah. Drying shrinkage of heat-cured fly ash-based geopolymer concrete. Modern Applied Science 3.12, (2009), p. 14. [Google Scholar]
  14. K. Nishikant, A. Nachiket, I. Avadhut, A. Sangar. Manufacturing of concrete paving block by using waste glass material. International Journal of Scientific and Research Publications. 6. 6, (2016), pp. 61-77. [Google Scholar]
  15. J. Torkaman, A. Ashori, A. S. Momtazi. Using wood fiber waste, rice husk ash, and limestone powder waste as cement replacement materials for lightweight concrete blocks. Construction and building materials, 50, (2014), pp. 432-436. [CrossRef] [Google Scholar]
  16. F. Pacheco-Torgal, Y. Ding, S. Jalali. Properties and durability of concrete containing polymeric wastes (tyre rubber and polyethylene terephthalate bottles): An overview. Construction and Building Materials, 30, (2012), pp. 714-724. [Google Scholar]
  17. S. Akçaözoǧlu, C. D. Atiş, K. Akçaözoǧlu. An investigation on the use of shredded waste PET bottles as aggregate in lightweight concrete. Waste management, 30, 2, (2010), pp. 285-290. [Google Scholar]
  18. V. W. Tam, C. M. Tam. A review on the viable technology for construction waste recycling. resources, conservation and recycling, 47, 3, (2006), pp. 209-221. [Google Scholar]
  19. B. Sulaiman, A. N. Bambang, H. Purnaweni, M. Lutfi. The effect of mangrove on fish catch using belat at Teluk Pemedas and Sanipah of Kutai Kartanegara regency, east Kalimantan province, Indonesia. E3S Web of Conferences. 31, 08029, (2018). [CrossRef] [EDP Sciences] [Google Scholar]
  20. National Standardization Agency of Indonesia. SNI 03-0691-1996 concrete brick (paving block). (1996) (in Indonesian). [Google Scholar]
  21. National Standardization Agency of Indonesia. SNI 15-2094-2000 solid brick for the wall. (2000) (in Indonesian). [Google Scholar]
  22. I. Ivan, I. Benenson, B. Jiang, J. Horak, J. Hawort, T. Inspektor. Geoinformatics for intelligent transportation. (2014), pp. 82-83. Springer. [Google Scholar]
  23. M. Lutfi. The effect of gravitational field on brachistochrone problem. Journal of Physics: Conference Series. 1028, 012060, (2018). IOP Publishing. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.