Open Access
Issue
MATEC Web Conf.
Volume 192, 2018
The 4th International Conference on Engineering, Applied Sciences and Technology (ICEAST 2018) “Exploring Innovative Solutions for Smart Society”
Article Number 02006
Number of page(s) 4
Section Track 2: Mechanical, Mechatronics and Civil Engineering
DOI https://doi.org/10.1051/matecconf/201819202006
Published online 14 August 2018
  1. S. Brouyère, G. Carabin, A. Dassargues. Climate change impacts on groundwater resources: modelled deficits in a chalky aquifer, Geer basin, Belgium. Hydrogeol. J., 12, 123-134 (2004) [Google Scholar]
  2. D. M. Allen, D. C. Mackie, M. Wei. Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeol. J., 12, 270-290 (2004) [CrossRef] [Google Scholar]
  3. M. I. Jyrkama, J. F. Sykes. The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J. Hydrol., 338, 237-250 (2007) [CrossRef] [Google Scholar]
  4. K. Srisuk, T. Nettasana. Climate change and groundwater resources in Thailand. J. Gw. Sc. and E., 5, 67-75 (2016) [Google Scholar]
  5. F. Bouraoui, G. Vachaud, L. Z. X. Li, H. Le Treut, T. Chen. Evaluation of the impact of climate changes on water storage and groundwater recharge at the watershed scale. Clim. Dyn., 15, 153-161 (1999) [CrossRef] [Google Scholar]
  6. S. T. Woldeamlak, O. Batelaan, F. De Smedt. Effects of climate change on the groundwater system in the Grote-Nete catchment, Belgium. Hydrogeol. J., 15, 891-901 (2007) [CrossRef] [Google Scholar]
  7. T. E. Croley, C. L. Luukkonen. Potential effects of climate change on ground water in Lansing Michigan., JAWRA, 39, 149-163 (2003) [Google Scholar]
  8. U. Seeboonruang. Impact assessment of climate change on groundwater and vulnerability to drought of areas in Eastern Thailand. Envir. Earth Sc., 75, 42 (2016) [CrossRef] [Google Scholar]
  9. U. Seeboonruang. An empirical decomposition of deep groundwater time series and possible link to climate variability. GNEST J., 16, 87-103 (2014) [Google Scholar]
  10. Thailand Department of Groundwater Resources Groundwater situation, Thailand 2015 Quarter 1, Ministry of Natural Resources and Environment, Bangkok. (2015) (in Thai) [Google Scholar]
  11. A. W. Harbaugh, E. R. Banta, M. C. Hill, M. G. McDonald. MODFLOW-2000, The U. S. Geological Survey Modular Ground-Water Model-User Guide to Modularization Concepts and the Ground-Water Flow Process, Open-file Report. USGS 92, 134 (2000) [Google Scholar]
  12. J. Wattanasetpong, P. Charoenvaravut, W. Laosinwattana. Downscaling climate models in Thailand by artificial neural network method. Thesis of civil engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand. (2015) (in Thai) [Google Scholar]
  13. P. Ruangrassamee, A. Khamkong, P. Chuenchum. Assessment of precipitation simulations from CMIP5 climate models in Thailand. ICWRE3, 591-599 (2015) [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.