Open Access
Issue
MATEC Web Conf.
Volume 190, 2018
5th International Conference on New Forming Technology (ICNFT 2018)
Article Number 12005
Number of page(s) 8
Section Sheet metal forming
DOI https://doi.org/10.1051/matecconf/201819012005
Published online 18 September 2018
  1. Biswas, A., Siegel, D.J., Wolverton, C., Seidman, D.N., 2011. Precipitates in Al–Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Materialia 59, 6187-6204. [CrossRef] [Google Scholar]
  2. Bourgeois, L., Dwyer, C., Weyland, M., Nie, J.-F., Muddle, B.C., 2011. Structure and energetics of the coherent interface between the θ" precipitate phase and aluminium in Al – Cu. Acta Materialia 59, 7043-7050. [CrossRef] [Google Scholar]
  3. Chen, Y., Weyland, M., Hutchinson, C.R., 2013. The effect of interrupted aging on the yield strength and uniform elongation of precipitation-hardened Al alloys. Acta Materialia 61, 5877-5894. [CrossRef] [Google Scholar]
  4. Donnadieu, P., Shao, Y., De Geuser, F., Botton, G.A., Lazar, S., Cheynet, M., de Boissieu, M., Deschamps, A., 2011. Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering. Acta Materialia 59, 462-472. [CrossRef] [Google Scholar]
  5. Eto, T., Sato, A., Mori, T., 1978. Stress-oriented precipitation of G.P. Zones and θ' in an Al-Cu alloy. Acta Metallurgica 26, 499-508. [CrossRef] [Google Scholar]
  6. Frost, H.J., Ashby, M.F., 1982. Deformation mechanism maps: the plasticity and creep of metals and ceramics. Pergamon press. [Google Scholar]
  7. Guinier, A., 1938. Structure of age-hardened aluminium-copper alloys. Nature 142, 569-570. [CrossRef] [Google Scholar]
  8. Ho, K.C., Lin, J., Dean, T.A., 2004. Modelling of springback in creep forming thick aluminum sheets. International Journal of Plasticity 20, 733-751. [CrossRef] [Google Scholar]
  9. Holman, M.C., 1989. Autoclave age forming large aluminum aircraft panels. Journal of Mechanical Working Technology 20, 477-488. [CrossRef] [Google Scholar]
  10. Howie, A., 1979. Image Contrast And Localized Signal Selection Techniques. Journal of Microscopy 117, 11-23. [CrossRef] [Google Scholar]
  11. Hu, L., Zhan, L., Shen, R., Liu, Z., Ma, Z., Liu, J., Yang, Y., 2017. Effects of uniaxial creep ageing on the mechanical properties and micro precipitates of Al-Li-S4 alloy. Materials Science and Engineering: A 688, 272-279. [CrossRef] [Google Scholar]
  12. Kumar, K.S., Brown, S.A., Pickens, J.R., 1996. Microstructural evolution during aging of an AlCuLiAgMgZr alloy. Acta Materialia 44, 1899-1915. [CrossRef] [Google Scholar]
  13. Lei, C., Yang, H., Li, H., Shi, N., Zhan, L.H., 2017. Dependences of microstructures and properties on initial tempers of creep aged 7050 aluminum alloy. Journal of Materials Processing Technology 239, 125-132. [CrossRef] [Google Scholar]
  14. Li, Y., Shi, Z., Lin, J., Yang, Y.-L., Rong, Q., Huang, B.-M., Chung, T.-F., Tsao, C.-S., Yang, J.-R., Balint, D.S., 2017. A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy. International Journal of Plasticity 89, 130-149. [CrossRef] [Google Scholar]
  15. Liu, L., Chen, J.H., Wang, S.B., Liu, C.H., Yang, S.S., Wu, C.L., 2014. The effect of Si on precipitation in Al–Cu–Mg alloy with a high Cu/Mg ratio. Materials Science and Engineering: A 606, 187-195. [CrossRef] [Google Scholar]
  16. Ma, P.P., Liu, C.H., Wu, C.L., Liu, L.M., Chen, J.H., 2016. Mechanical properties enhanced by deformation-modified precipitation of θ′-phase approximants in an Al-Cu alloy. Materials Science and Engineering: A 676, 138-145. [CrossRef] [Google Scholar]
  17. Nie, J.F., Muddle, B.C., 2008. Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates. Acta Materialia 56, 3490-3501. [CrossRef] [Google Scholar]
  18. Pennycook, S.J., Jesson, D.E., 1991. High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 14-38. [CrossRef] [Google Scholar]
  19. Polmear, I.J., 1987. Role of Trace Elements in Aged Aluminium-Alloys. Materials Science Forum 13-14, 195-214. [CrossRef] [Google Scholar]
  20. Rodgers, B.I., Prangnell, P.B., 2016. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al–Cu–Li alloy AA2195. Acta Materialia 108, 55-67. [CrossRef] [Google Scholar]
  21. Ungár, T., 2001. Dislocation densities, arrangements and character from X-ray diffraction experiments. Materials Science and Engineering: A 309, 14-22. [CrossRef] [Google Scholar]
  22. Xu, Y., Zhan, L., Li, W., 2017a. Effect of pre-strain on creep aging behavior of 2524 aluminum alloy. Journal of Alloys and Compounds 691, 564-571. [CrossRef] [Google Scholar]
  23. Xu, Y., Zhan, L., Xu, L., Huang, M., 2017b. Experimental research on creep aging behavior of Al-Cu-Mg alloy with tensile and compressive stresses. Materials Science and Engineering: A 682, 54-62. [CrossRef] [Google Scholar]
  24. Yang, Y., Zhan, L., Ma, Q., Feng, J., Li, X., 2016. Effect of pre-deformation on creep age forming of AA2219 plate: Springback, microstructures and mechanical properties. Journal of Materials Processing Technology 229, 697-702. [CrossRef] [Google Scholar]
  25. Zhan, L., Lin, J., Dean, T.A., 2011a. A review of the development of creep age forming: Experimentation, modelling and applications. International Journal of Machine Tools and Manufacture 51, 1-17. [CrossRef] [Google Scholar]
  26. Zhan, L., Lin, J., Dean, T.A., Huang, M., 2011b. Experimental studies and constitutive modelling of the hardening of aluminium alloy 7055 under creep age forming conditions. International Journal of Mechanical Sciences 53, 595-605. [CrossRef] [Google Scholar]
  27. Zhang, J., Deng, Y., Zhang, X., 2013. Constitutive modeling for creep age forming of heat-treatable strengthening aluminum alloys containing plate or rod shaped precipitates. Materials Science and Engineering: A 563, 8-15. [CrossRef] [Google Scholar]
  28. Zhu, A.W., Starke, E.A., 1999. Strengthening effect of unshearable particles of finite size: a computer experimental study. Acta Materialia 47, 3263-3269. [CrossRef] [Google Scholar]
  29. Zhu, A.W., Starke, E.A., 2001a. Stress aging of Al–xCu alloys: experiments. Acta Materialia 49, 2285-2295. [CrossRef] [Google Scholar]
  30. Zhu, A.W., Starke, J.E.A., 2001b. Stress aging of Al–Cu alloys: computer modeling. Acta Materialia 49, 3063-3069. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.