Open Access
Issue
MATEC Web Conf.
Volume 189, 2018
2018 2nd International Conference on Material Engineering and Advanced Manufacturing Technology (MEAMT 2018)
Article Number 10026
Number of page(s) 10
Section Bio & Human Engineering
DOI https://doi.org/10.1051/matecconf/201818910026
Published online 10 August 2018
  1. Yuri Y. Boykov, M. P. Jolly: ‘Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images’. Proc. Int. Conf. Computer Vision (ICCV), Vancouver, Canada, July 2001, pp. 105-112 [Google Scholar]
  2. Y. Li, J. Sum, C. K. Tang et al.: ‘Lazy Snapping’. Proc. Int. Conf. ACM SIGGRAPH, California, USA, August 2004, pp. 303-309 [Google Scholar]
  3. C. Rother, V. Kolmogorov, A. Blake: ‘GrabCut-Interactive Foreground Extraction using Iterated Graph Cuts’. Proc. Int. Conf. ACM SIGGRAPH, California, USA, August 2004, pp. 304-314 [Google Scholar]
  4. A. Agarwala, M. Dontcheva, M. Agrawala et al.: ‘Interactive digital photomontage’. Proc. Int. Conf. ACM SIGGRAPH, California, USA, August 2004, pp. 294-302 [Google Scholar]
  5. V. Kolmogorov, and Y. Boykov: ‘What metrics can be approximated by geo-cuts, or global optimization of length/area and flux’. Proc. Int. Conf. Computer Vision (ICCV), Beijing, China, October 2005, pp. 564-571 [CrossRef] [Google Scholar]
  6. J. Jia, J. Sun, C. K. Tang et al.: ‘Drag-and-Drop Pasting’. Proc. Int. Conf. ACM SIGGRAPH, Massachusetts, USA, July 2006, pp. 631-637 [Google Scholar]
  7. S. Vincente, V. Kolmogorov, and C. Rother: ‘Graph cut based image segmentation with connectivity priors’. Proc. Int. Conf. Computer Vision and Pattern Recognition, Anchorage, USA, June 2008, pp. 1-8 [Google Scholar]
  8. V. Lempitsky, P. Kohli, C. Rother et al.: ‘Image segmentation with a bounding box prior’. Proc. IEEE Int. Conf. Computer Vision, Kyoto, Japan, September 2009, pp. 277-284 [Google Scholar]
  9. H. N. Tran, D. Seo, and T.H. Tu: ‘Augmented Lazy Snapping: how does presegmentation help Lazy Snapping framework?’. To appear in Proc. Int. Conf. Graphic and Image Processing (ICGIP), Qingdao, China, October 2017. [Google Scholar]
  10. S. Candemir, and Y. S. Akgul: ‘Statistical significance based Graph Cut segmentation for shrinking bias’. Proc. Int. Conf. Image Analysis and Recognition, Burnaby, Canada, June 2011, pp. 304-313 [Google Scholar]
  11. X. Jen, J. Malik: ‘Learning a classification model for segmentation’. Proc. Int. Conf. Computer Vision (ICCV), Nice, France, October 2003, pp. 10-17 [Google Scholar]
  12. Z. Li, J. Chen: Superpixel Segmentation using Linear Spectral Clustering’. Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition (CVPR), Boston, MA, October 2015, pp. 1356-1363 [Google Scholar]
  13. R. Achanta, A. Shaji, K. Smith et al.: ‘SLIC Superpixels Compared to State-of-the-Art Superpixel Methods’. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 10, vol. 34, no. 11, pp. 2274-2282 [Google Scholar]
  14. M. van den Bergh, X. Boix, G. Roig, et al.: ‘SEEDS: Superpixels extracted via energydriver sampling’. Proc. European Conf. Computer Vision (ECCV), Florence, Italy, October 2012, pp. 13-26 [Google Scholar]
  15. Stutz, A. Hermans, B. Leibe: ‘Superpixel Segmentation using Depth Information’. Bachelor thesis, RWTH Aachen University, Aachen, Germany, 2014 [Google Scholar]
  16. K. He, J. Sun, and X. Tang: Guided Image Filtering’. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, vol. 35, nol. 6, pp. 1397-1409 [Google Scholar]
  17. X. Dong, J. Shen, L. Shao et al.: ‘Sub-Markov Random Walk for Image Segmentation’. IEEE Transactions on Image Processing, 2016, vol. 25, no. 2, pp. 516-527 [CrossRef] [MathSciNet] [Google Scholar]
  18. ‘Bokeh’, https://en.wikipedia.org/wiki/Bokeh, access 14 November 2017 [Google Scholar]
  19. D. Martin, C. Fowlkes, D. Tal et al.: ‘A database of Human Segmented Natural Images and its Application to evaluating Segmentation Algorithms and measuring ecological statistics’. Proc. 8th IEEE Int. Conf. Computer Vision (ICCV), Vancouver, Canada, July 2001, pp. 416-423 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.